
IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 3, Issue 1, Feb-Mar, 2015

ISSN: 2320 – 8791 (Impact Factor: 1.479)

www.ijreat.org

www.ijreat.org
 Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org) 120

Spatial Data MiningSpatial Data MiningSpatial Data MiningSpatial Data Mining: : : : Querying Querying Querying Querying Over Over Over Over Spatial DataSpatial DataSpatial DataSpatial Data

Nipun Bansal

Department of Computer Science, SGGSCC, Delhi University, New Delhi, 110088

Abstract
Mining data from large amounts of spatial data is very difficult
because of the huge amounts of spatial data collected from satellite
or local cameras for many important and sophisticated areas like
designing of road maps for different regions or states, countries,
cloud cover, traffic control or GPS etc. Thus owing to urgent
practical, social and environmental needs, knowledge discovery in
spatial data has become important and one of the rapidly growing
field. In this paper, an overview of common knowledge discovery
algorithms and a comparative study of these algorithms have been
done.
Keywords: Spatial Data, Data Mining, Map reduce.

1. Introduction

Spatial data are the data related to object that occupy space.
Aspatial database stores the spatial objects represented by
spatial data types and spatial relationships among such
objects the number and size of spatial database e.g. for geo
marketing, traffic control or environmental studies, medical
diagnosis, weather prediction are rapidly growing which
result in an increasing need to store huge amount of data
and retrieve information that is both convenient and
efficient.
A very interesting and efficient method has introduced for
this purpose and it is called as Spatial Data Querying.
Thus spatial data querying can be summarized as:

1. Extracting interesting spatial patterns and features
2. Capturing intrinsic relationships between spatial

and non-spatial data
3. Presenting data regularity concisely and at higher

conceptual levels and
4. Helping to reorganize spatial databases to

accommodate data semantics, as well as to achieve
better performance

This report deals with spatial data structures for
indexing and with their usability for knowledge discovery
in spatial data. Huge amount of data processed in spatial
data mining requires using some indexing structures to
speed up the mining process which are described in this
paper. Then the various algorithms and methods for
processing and analyzing spatial data are described and a

comparative study of these algorithms is done. We then
explored Parallel Data Mining, an upcoming field. Three
new frameworks Map Reduce, DBMS-X and Vertica are
introduced and a comparison of these techniques has been
done. Finally benchmark performances of them are
presented.

2. Database sources and issues

With the advancement in technology and tools, spatial data
maybe collected in huge amount from different resources
for various applications ranging from remote sensing and
satellite telemetry systems, to computer cartography,
medical diagnosis, weather analysis and prediction, and all
kinds of environmental planning. Various national and
international agencies are also providing spatial data in
different dimensions. Most common data sources are
satellite images, medical images, human body’s protein
structure and all those data who can be represented in the
form of cuboids, polygon, cylinder etc. Various sites are
also available for collection of GIS data for example Google
earth, visible earth (NASA),JSC digital image collection
(NASA) ,Global land cover facility are also available for
collection of spatial data. Basically spatial data include
geographic data such as maps and associated information,
and computer aided design data such as integrated circuit
design or building designs. It has observed that 2D database
are not more efficient in storing, indexing and queuing of
data on the basis of spatial locations .Additionally for 2D
databases, we cannot use standard index structures, such as
B-trees or hash indices, to answer such a query efficiently.
So it is recommended that we should work for higher
dimensional data.

3. Spatial data mining and spatial data

querying

Analysis is an important part of GIS which allows spatial
operations with data (e. g. network analysis or filtering of
raster data), measuring functions (e.g. distance, direction

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 3, Issue 1, Feb-Mar, 2015

ISSN: 2320 – 8791 (Impact Factor: 1.479)

www.ijreat.org

 www.ijreat.org
 Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org) 121

between objects), statistical analyses or terrain model
analysis (e. g. visibility analysis).
Spatial data mining is a special kind of data mining. The
main difference between data mining and spatial data
mining is that in spatial data mining tasks we use not only
non-spatial attributes(as it is usual in data mining in non-
spatial data), but also spatial attributes.
Basic tasks of spatial data mining are:

data set - First a particular application like weather
forecasting, traffic control for which analyses needs to be
performed has to be identified and then the data set may be
collected using satellite or GPS or other sensors for
processing.

Data processing - Analyst may select, filter, aggregate,
sample, clean and/or transform data into much more
understandable form. Unwanted and useless portions may
be cut from the existing data hence to improve the
productivity and applicability of the data.

Prediction - Prediction means to give some outcomes in
advance on the basis of previous history or patterns of data
items. Values of specific attributes of the data items may
also be calculated accurately with iterative methods and
different samples of data.

Regression - Given a set of data items, regression identifies
dependency y of some attribute values upon the values of
other attributes in the same item and apply these values on
other data items or records.

Classification - Given a set of predefined categorical classes,
determine to which of these classes a specific data item
belongs. For example, in weather prediction system we
classify satellite images into different classes on the basis of
some common properties and patterns.

Clustering - given a set of data items, group items that are
similar. For example, given a set of satellite images, identify
subgroup of objects of patterns (colored, non colored, size,
shape)and their behavior.

Link Analysis - Given a set of data items identify
relationships b/w attributes and items such as the presence
of one pattern implies the presence of another pattern.

Model visualization - Visualization plays a very important
role in understanding and demonstration the desired task
properly. Visualization techniques may range from simple
scatter plots and histogram plots over parallel coordinates

to 3D data items.

Result testing, verification and refinement - This step
includes verifying and testing the results got from above
steps and refining them for better accuracy and efficiency.
Spatial data querying on the other hand is a stage in the
whole process of spatial data mining and can be explained
in detail as:

• Classification: finds a set of rules which determine

the class of the classified object according to its
attributes e. g. "IF population of city = high AND
economic power of city =high THEN
unemployment of city = low" or classification of a
pixel into one of classes, e. g. water, field, forest.

• Association rules: Association rules describe
patterns, which are often in the database. The
association rule has the following form: A! B(s %;
c %), where s is the support of the rule (the
probability, that A and B hold together in all the
possible cases) and c is the confidence (the
conditional probability that B is true under the
condition of A e. g. "if the city is large, it is near
the river (with probability 80 %)".

• Characteristic rules: describe some part of

database e.g. "bridge is an object in the place
where a road crosses a river."

• Discriminant rules: describe differences between
two parts of database e. g. find differences between
cities with high and low unemployment rate.

• Clustering: groups the object from database into

clusters in such a way that object in one cluster are
similar and objects from different clusters are
dissimilar e. g. we can find clusters of cities with
similar level of unemployment or we can cluster
pixels into similarity classes based on spectral
characteristics.

Figure 1: Quad Tree

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 3, Issue 1, Feb-Mar, 2015

ISSN: 2320 – 8791 (Impact Factor: 1.479)

www.ijreat.org

 www.ijreat.org
 Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org) 122

• Trend detection: finds trends in database. A trend
is a temporal pattern in some time series data. A
spatial trend is defined as a pattern of change of a
non-spatial attribute in the neighborhood of a
spatial object e. g. "when moving away from Brno,
the unemployment rate increases" or we can find
changes of pixel classification of a given area in
the last five years.

 Figure 2: k-d Tree

4. Data structures used in querying spatial

data

4.1 Quad tree

The quad tree is used to index 2D space. Each internal node
of the tree splits the space into four disjoint subspaces
(called NW,NE, SW, SE) according to the axes. Each of
these subspaces is split recursively until there is at most one
object inside each of them. The quad tree is not balanced
and its balance depends on the data distribution and the
order of inserting the points.

4.2 k -d -tree

This method uses a binary tree to split k - dimensional
space. This tree splits the space into two subspaces
according to one of the coordinates of the splitting point.
Let level (nod) be the length of the path from the root to
the node nod and suppose the axes are numbered from 0 to
k - 1. At the level, level (nod) in every node the space is
split according to the coordinate number (level (nod) mod
k).

Inserting and searching are similar to the binary trees. We
only have to compare nodes according to the coordinate
number (level (nod) mod k). This structure has a
disadvantage that it is sensitive to the order in which the
objects are inserted.

4.3 R-Tree

A spatial database consists of a collection of tuples
representing spatial objects, and each tuple has a
unique identifier which can be used to retrieve it. An
index based on object’s spatial locations is desirable,
but classical one dimensional database indexing
structures are not appropriate to multi-dimensional
spatial searching. Also, structures based on exact
matching of values, such as hash tables, are not useful
because a range search 1s requested. Since the search
space is multidimensional, structures using one
dimensional ordering of key values, such as B-trees
and ISAM indexes, also fails.

 Figure 3: R-tree for 2D rectangles

 Figure 4

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 3, Issue 1, Feb-Mar, 2015

ISSN: 2320 – 8791 (Impact Factor: 1.479)

www.ijreat.org

 www.ijreat.org
 Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org) 123

Structure An R-tree 1s a height-balanced tree similar
to a B-tree with index records in its leaf nodes
containing pointers to data objects. Let M be the
maximum number of entries that will fit at one node
and let m = M/2 be a parameter specifying the
maximum number of entries in a node

1. Every leaf node contains between m and M index
records unless it is the root.

2. For each index record , (I, tuple-identifier) in a leaf
node, I
1s the smallest rectangle that spatially contains the n-
dimensional data object represented by the indicated
tuple.

3. Every non-leaf node has between m and M
children unless it is the root.

4. For each entry (I, child-pointer) in a non-leaf
node, I 1s the smallest rectangle that spatially
contains the rectangles in the child node

5. The root node has at least two children unless it is a
leaf.

 6. All leaves appear on the same level.

Search

The input is a search rectangle (Query box). Searching
is quite similar to searching in a B+ tree. The search
starts from the root node of the tree. Every internal
node contains a set of rectangles and pointers to the
corresponding child node and every leaf node contains
the rectangles of spatial objects (the pointer to some
spatial object can be there). For every rectangle in a
node, it has to be decided if it overlaps the search
rectangle or not. If yes, the corresponding child node

has to be searched also. Searching is done like this in
a recursive manner until all overlapping nodes have
been traversed. When a leaf node is reached, the
contained bounding boxes (rectangles) are tested
against the search rectangle and their objects (if there
are any) are put into the result set if they lie within the
search rectangle.

A recursive process starting from the root result = f
For a node N
if N is a leaf node, then result =

result [N else // N is a non-leaf node
for each child N’ of N
if the rectangle of N’ contains q then recursively

search N’

Insertion To insert an object, the tree is traversed
recursively from the root node. At each step, all rectangles
in the current directory node are examined, and a candidate
is chosen using a heuristic such as choosing the rectangle
which requires least enlargement. The search then
descends into this page, until reaching a leaf node. If the
leaf node is full, it must be split before the insertion is
made. Again, since an exhaustive search is too expensive,
a heuristic is employed to split the node into two. Adding
the newly created node to the previous level, this level can
again overflow, and these overflows can propagate up to
the root node; when this node also overflows, a new root
node is created and the tree has increased in height.

Splitting an overflowing node

Since redistributing all objects of a node into two nodes has
an exponential number of options, a heuristic needs to be
employed to find the best split. In the classic R-tree,
Guttman proposed two such heuristics, called Quadratic
Split and Linear Split. In quadratic split, the algorithm
searches the pair of rectangles that is the worst combination
to have in the same node, and puts them as initial objects
into the two new groups. It then searches the entry which
has the strongest preference for one of the groups (in terms
of area increase) and assigns the object to this group until
all objects are assigned (satisfying the minimum fill).

Figure 5: Data objects in the map are

represented by MBR

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 3, Issue 1, Feb-Mar, 2015

ISSN: 2320 – 8791 (Impact Factor: 1.479)

www.ijreat.org

 www.ijreat.org
 Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org) 124

4.4 R+ Tree

R+ tree is an extension of the R tree. In contrast to R tree
bounding rectangles of the nodes at one level don’t overlap
in this structure. This feature decreases the number of
searched branches of the tree and reduces the time
consumption. In the R+-tree it is allowed to split data
objects so that different parts of one object can be stored
in more nodes of one tree level. If a rectangle over-laps
another one, we decompose it into a group of non-
overlapping rectangles which cover the same data objects.
This increases a space consumption but allows zero
overlap of the nodes and therefore reduces the time
consumption.

R+ trees differ from R trees in that

• Nodes are not guaranteed to be at least half filled
• The entries of any internal node do not overlap
• An object ID may be stored in more than one leaf

node

Advantages over R tree

• Because nodes are not overlapped with each
other, point query performance benefits since all
spatial regions are covered by at most one node.

• A single path is followed and fewer nodes are
visited than with the R-tree.

Disadvantages over R tree

• Since rectangles are duplicated, an R+ tree can
be larger than an R tree built on same data set.

• Construction and maintenance of R+ trees is
more complex than the construction and
maintenance of R trees and other variants of the
R tree.

4.5 R* - Trees

R*-trees are a variant of R-trees used for indexing spatial information.
Operations on R* tree in SQLite Database

1. Creating An R*Tree Index
Consider creating a 2D R*Tree index for use in spatial queries:

CREATE VIRTUAL TABLE demoindex USING rtree(
id, – Integer primary key
minX, maxX, – Min and Max X coordinate
minY, maxY – Min and Max Y coordinate);

2. Populating An R*Tree Index

INSERT INTO demoindex
VALUES(1, – Primary key
-80.7749, -80.7747, – Longitude range
35.3776, 35.3778 – Latitude range);

3. Querying An R*Tree Index

To find all elements of the index that are contained within the
vicinity of given point we can write query like:

SELECT id FROM demoindex
WHERE maxX>=-81.08 AND minX<=-80.58
AND maxY>=35.00 AND minY<=35.44;

Difference between R*-trees and R-trees

1. Optimization in ChooseSubTree module for leaf
nodes

2. Revised Node-Split Algorithm. The split heuristic

is improved to produce pages that are more
rectangular and thus better for many applications.

3. Forced Reinsertion at Node Overflow which

optimizes the existing tree, but increases
complexity.

4. Completely Dynamic.

5. Supports point and spatial data efficiently at the

same time.

6. Implementation cost of R* tree is slightly higher
than that of other R-trees.

Figure 6: R+ tree

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 3, Issue 1, Feb-Mar, 2015

ISSN: 2320 – 8791 (Impact Factor: 1.479)

www.ijreat.org

 www.ijreat.org
 Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org) 125

4.6 Neighborhood graphs
Neighborhood graphs and neighborhood paths
Definition: Neighborhood graph G for spatial relation
neighbor=2is a graph G(U,H) where U is a set of nodes and
H is a set of edges. Each node represents an object and two
nodes N1, N2 are connected by edge iff the objects
corresponding to N1 and N2 are in the relation neighbor.
The relation neighbor can be:

1. topological relation, e. g. two objects touch, cover, are

equal

2. metric relation, e. g. distance of the objects is less than
d

3. direction relation, e.g. north, south, east, west

4. any conjunction or disjunction of previous relations

Neighborhood graph is oriented. Thus it can happen that
object A is a neighbor of the object B but object B is not a
neighbor of the object A.
Definition: Neighborhood path for the neighborhood
graph G is an ordered list of nodes from G where every two
following nodes from the path are connected by some edge
from G, i. e. for the path [n0, n1,....., nk¡1] there must be
edges (ni , niÅ1) for every 0· i < k-1. Length of the path is a
sum of edges in the path.

Elementary operations on the neighborhood graphs

Elementary operations on the neighborhood graphs are:

getGraph(data, neighbor)- returns the neighborhood
graph G representing the relation neighbor on the objects
from the table data. The relation neighbor can be one of the
spatial relations listed in the definition of the neighborhood
graph.

getNeighborhood(G, o, pred) - returns the set of the
objects connected to the object o by some of the edges
from the graph G. The predicate pred must hold for these
objects. This condition is used if we want to get only some
specific neighbors of the object o. The predicate pred may
not necessarily be spatial.

createPath(G, pred, i)- returns the set of all paths which
consist of the nodes and edges from the graph G, their
length is less than or equal to i and the predicate pred holds
for them. Moreover these paths must not contain any cycles,

i.e. every node from G can appear at most once in each path.

4.7 MapReduce

MapReduce is a programming model and an associated
implementation for processing and generating large data
sets. A Map Reduce program consist of only two functions
Map and Reduce writ-ten by user to process key/value data
pairs.
Map, written by the user, takes an input pair and produces
a set of intermediate key/value pairs. The MapReduce
library groups together all intermediate values associated
with the same intermediate key I and passes them to the
Reduce function.
The Reduce function, also written by the user, accepts an
inter-mediate key I and a set of values for that key. It merges
together these values to form a possibly smaller set of
values. Typically just zero or one output value is produced
per Reduce invocation Programs written in this functional
style are automatically parallelized and executed on a large
cluster of commodity machines. The run-time system takes
care of the details of partitioning the input data, scheduling
the program’s execution across a set of machines, handling
machine failures, and managing the required inter-machine
communication. This allow programmers without any
experience with parallel and distributed systems to easily
utilize the resources of a large distributed system.
Input and Output types of a MapReduce job:
(input) <k1, v1> -> map -><k2, v2> -> combine -><k2,
v2> -> reduce -><k3, v3> (output)

4.8 Parallel Database Systems

The two key aspects that enable parallel execution are that
(1) most (or even all) tables are partitioned over the nodes
in a cluster and that (2) the system uses an optimizer that
translates SQL commands into a query plan whose
execution is divided amongst multiple nodes. Because
programmers only need to specify their goal in a high level
language, they are not burdened by the under-lying storage
details, such as indexing options and join strategies.
Consider a SQL command to filter the records in a table T1
based on a predicate, along with a join to a second table T2
with an aggregate computed on the result of the join. A
basic sketch of how this command is processed in a parallel
DBMS consists of three phases. Since the database will

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 3, Issue 1, Feb-Mar, 2015

ISSN: 2320 – 8791 (Impact Factor: 1.479)

www.ijreat.org

 www.ijreat.org
 Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org) 126

have already stored T1 on some collection of the nodes
partitioned on some attribute, the filter sub-query is first
performed in parallel at these sites similar to the filtering
performed in a Map function. Following this step, one of
two common parallel join algorithms are employed based
on the size of data tables. For example, if the number of
records in T2 is small, then the DBMS could replicate it on
all nodes when the data is first loaded. This allows the join
to execute in parallel at all nodes. Following this, each node
then computes the aggregate using its portion of the answer
to the join. A final "roll-up" step is required to compute the
final answer from these partial aggregates.

If the size of the data in T2 is large, then T2’s contents will
be distributed across multiple nodes. If these tables are
partitioned on different attributes than those used in the
join, the system will have to hash both T2 and the filtered
version of T1 on the join attribute using a common hash
function. The redistribution of both T2 and the filtered
version of T1 to the nodes is similar to the processing that
occurs between the Map and the Reduce functions. Once
each node has the necessary data, it then performs a hash
join and calculates the preliminary aggregate function.

5. Queries on spatial data

The key characteristic that makes a spatial database a
powerful tool is its ability to manipulate spatial data, rather
than simply to store and represent them. The basic form of
such a database is answering queries related to the spatial
properties of data. Some typical spatial queries are the
following:

1. A "Point Location Query" seeks for the objects that
fall on a given point (e.g. the country where a specific
city belongs).

2. A "Range Query" seeks for the objects that are

contained within a given region, usually expressed as
a rectangle or a sphere (e.g. the pathways that cross a
forest).

3. A "Join Query" may take many forms. It involves two

or more spatial datasets and discovers pairs (or tuples,
in case of more than two datasets) of objects that
satisfy a given spatial predicate (e.g. the pairs of boats
and stormy areas, for boats sailing across a storm).

4. The distance join was recently introduced to compute

a subset of the Cartesian product of two datasets,
specifying an order on the result based on distance
(e.g. the pairs of hotels and archeological sites,
ordered by driving distance up to 50 km between
them).

Finally, very common is the "Nearest Neighbor Query" that
seeks for the objects residing more closely to a given object.
In its simplest form, it discovers one such object (the nearest
neighbor). Its generalization discovers K such objects (K
nearest neighbors), for a given K (e.g. the K ambulances
closer to a spot where an accident with K injured persons
occurred).

6. Algorithms and methods

In this section we have presented the various queries
possible on Spatial Data in detail. Also the experimental
results are analyzed for spatial queries.

6.1 Nearest Neighbor Queries

A very common type of query in spatial data is to find the k
nearest neighbor to a given object or point in space. A naive
approach to solve this problem requires O(n2) time with no
preprocessing to find the neighbor of all the points in the
data set, S. The author has proposed a much better and
efficient search algorithm using R- tree for processing exact
k - nearest neighbor queries and introduced several metrics
for ordering and pruning the R tree.

NEAREST NEIGHBOR SEARCH USING R-TREES

Metrics for Nearest Neighbor Search

Let NP and NQ be two internal nodes of RP and RQ,
respectively. Each of these nodes has an MBR that contains
all the points that reside in the respective sub tree. In order
for this rectangle to be the minimum bounding one, at least
one point is located at each edge of the rectangle. Let MP
and MQ represent the MBRs of NP and NQ, respectively. Let
r1, r2, r3 and r4 be the four edges of MP and s1, s2, s3 and
s4 be the four edges of MQ. By MINDIST(ri , si) we denote
the minimum distance between two points falling on riand
si. Accordingly, by MAXDIST(ri, si) we denote the
maximum distance between two points falling on ri and si .
In the sequel, we extend definitions of metrics between a
point and an MBR that appear in and define a set of useful
metrics between two MBRs. In case MP and MQ are disjoint
we can define a met-ric that expresses the minimum

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 3, Issue 1, Feb-Mar, 2015

ISSN: 2320 – 8791 (Impact Factor: 1.479)

www.ijreat.org

 www.ijreat.org
 Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org) 127

possible distance of two points contained in different
MBRs:

MINMINDIST(MP , MQ) = mini,j MINDIST(ri, sj)

In case the MBRs of the two nodes intersect, then
MINMINDIST(MP , MQ) equals 0. In any case (intersecting
or disjoint MBRs) we can define the metrics
MINMAXDIST(MP , MQ) = mini,j MAXDIST(ri , si) and

MAXMAXDIST(MP , MQ) = maxi,j MAXDIST(ri , si)

MAXMAXDIST expresses the maximum possible
distance of any two points contained in different MBRs.

MINMAXDIST expresses an upper bound of distance for
at least one pair of points. More specifically, there exists
at least one pair of points (contained in different MBRs)
with distance smaller than or equal to MINMAXDIST. In
Figure, two MBRs and their MIN-MINDIST,
MINMAXDIST and MAXMAXDIST distances are
depicted. At least one point is located on each edge of each
MBR.
To summarize, for each pair (pi , qj) of points, pi enclosed
by MP and qj enclosed by MQ, it holds that

MINMINDIST(MP , MQ) · dist(pi , qj)·
MAXMAXDIST(MP , MQ))

Moreover, there exists at least one pair (pi , qj) of
points,pi enclosed by MP and qj enclosed by MQ, such that

dist(pi , qj) · MINMAXDIST(MP , MQ)

Theorem 1 For a point P and an MBR R enclosing a set
of objects say o1, o2, o3 , o4, om then for any object o
, MINDIST (P , R) · (P ,o).

Theorem 2 For a point P and an MBR R enclosing a set
of objects say o1, o2, o3 , o4 , om then for any object o ,
MINMAXDIST (P , R) ¸ (P ,o).

Nearest Neighbor Search Algorithm

We utilize the two theorems we developed to formulate
the following three strategies to prune MBRs during the

search:

1. An MBR M with MINDIST(P,M) ¸

MINMAXDIST(P,M’) of another MBR M’ is
discarded because it cannot contain the NN
(theorems 1 and 2).We use this in downward
pruning.

2. An actual distance from P to a given object O

which is greater than the MINMAXDIST(P,M) for
an MBR M can be discarded.

because M contains an object O’ which is nearer to P
(theorem 2). This is used in upward pruning.

3. Every MBR M with MINDIST(P,M) greater than the
actual distance from P to a given object O is discarded
because it cannot enclose an object nearer than O
(theorem 1). We use this in upward pruning.

The algorithm presented above can be easily generalized to
answer queries of the type: Find the k Nearest Neighbors to
a given Query Point, where k is greater than zero.
The only differences are:

Figure 7: Two MBRs and their MINMINDIST,

MINMAXDIST and MAXMAXDIST

Figure 8: MINDIST and

MINMAXDIST in 2-Space

Figure 9: MINDIST is not always the better

ordering

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 3, Issue 1, Feb-Mar, 2015

ISSN: 2320 – 8791 (Impact Factor: 1.479)

www.ijreat.org

 www.ijreat.org
 Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org) 128

1. A sorted buffer of at most k current nearest neighbors
is needed.

2. The MBRs pruning is done according to the distance
of the furthest nearest neighbor in this buffer.

Best First Search

² Calculates minmax distance for all objects
² Sort R-Tree by minmax distance
² Removes nodes from sorted tree. If node has no

children , then it is the nearest neighbor

Algorithms for finding Closest Pairs (CPQs)

In the following, a number of different algorithmic
approaches for discovering the 1-CP and the K-CPs
between points stored in two R-trees are presented.

Naive Algorithm

The simplest approach to the problem of Closest Pair
Queries is to follow a recursive naive solution for the 1- CP
subproblem and for two R-trees of the same height. Such
an algorithm consists of the following steps.
CP1 Start from the roots of the two R-trees and set the
minimum distance found so far, T¯ .
CP2 If you access a pair of internal nodes, propagate
downwards recursively for every possible pair of MBRs.
CP3 If you access two leaves, calculate the distance of each
possible pair of points. If this distance is smaller than T,
update T.

Exhaustive Algorithm

An improvement of the previous algorithm is to make use
of the left part of Inequality 1 and prune some paths in the
two trees that are not likely to lead to a better solution. The
CP2 step of the previous algorithm would now be:

CP2: If we access a pair of internal nodes, calculate

MINMINDIST for each possible pair of MBRs. Propagate

downwards recursively only for those pairs that have

MINMINDIST · T.

Simple Recursive Algorithm

A further improvement is to try to minimize the value of T
as soon as possible. This can be done by making use of
Inequality 2. That is, when a pair of internal nodes is

visited, to examine if Inequality 2 applied to every pair of
MBRs, can give a smaller T value. Since Inequality 2 holds
for at least one pair of points, this improvement is sound
for the 1-CP problem. The CP2 step would now be:

CP2: If you access a pair of internal nodes, calculate the

minimum of MINMAXDIST for all possible pairs of

MBRs. If this minimum is smaller than T, update T.

Calculate MINMINDIST for each possible pair of MBRs.

Propagate downwards recursively only for those pairs that

have MINMINDIST · T.

Sorted Distances Recursive Algorithm

A heuristic that aims at improving our algorithms even more
when two internal nodes are accessed, is to sort the pairs of
MBRs ac-cording to ascending order of MINMINDIST and
to obey this or-der in propagating downwards recursively.
This order of processing is expected to improve pruning of
paths. The CP2 step of the previous algorithm would be:

CP2: If we access a pair of internal nodes, calculate the
mini-mum of MINMAXDIST for all possible pairs of
MBRs. If this minimum is smaller than T, update T.
Calculate MINMINDIST for each possible pair of MBRs
and sort these pairs in ascending order of MINMINDIST.
Following this order, propagate downwards recursively
only for those pairs that have MINMINDIST <= T.

Heap Algorithm

The overall algorithm is as follows.

1. Start from the roots of the two R-trees, set T to
infinity and initialize the heap.

2. If we access a pair of internal nodes, calculate the

mini-mum of MINMAXDIST for all possible

pairs of MBRs. If this minimum is smaller than T,

update T. Calculate MIN-MINDIST for each

possible pair of MBRs. Insert into the heap those

pairs that have MINMINDIST · T

3. If we access two leaves, calculate the distance of
each possible pair of points. If this distance is
smaller than T, update T.

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 3, Issue 1, Feb-Mar, 2015

ISSN: 2320 – 8791 (Impact Factor: 1.479)

www.ijreat.org

 www.ijreat.org
 Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org) 129

4. If the heap is empty then stop.

5. Get the pair on top of the heap. If this pair has
MINMINDIST > T, then stop. Else, repeat the
algorithm from Step 2 for this pair.

6.2 An index structure for efficient reverse nearest
neighbor(RNN) queries

.Introduction

RNN query finds all the points in the given data set S,
having a query point q as their nearest neighbor. the
author in this paper has proposed a new structure called
Rdnn - tree i.e. R - tree containing Distance of Nearest
Neighbors differing from standard R tree structure in
terms of storing extra information about nearest
neighbor of the points in each node.

Motivation

R - tree faces the following limitations :-

1. There is a large overlap of MBR (Minimum
Bounding Region) of parent nodes hampering the
RNN search performance

2. For dynamic cases, a second tree is required for
storing the index structure of the spherical regions
resulting in more time to compute RNN queries
and added maintenance cost.

Thus there is a need to propose a better structure that
can eliminate the above limitations and can provide
better features for faster execution of both NN and
RNN queries.

Rdnn - Structure and Proposed Algorithm

In a Rdnn - tree consist of leaf node and internal node. An
internal node consist of an array of branches of the form
(ptr; Rect; maxdnn) where ptr is the address of a child node
in the tree and if the ptr points to a leaf node, Rect is the
minimum bounding rectangle of all points in the leaf node
otherwise Rect is the minimum bounding rectangle of all
rectangles that are entries in the child node. Whereas the
leaf node is of the form (ptid;dnn), where ptid refers to a d-
dimensional point in the data set and dnn is the distance
from the point to its nearest neighbors in the data set.

Algorithms Proposed

RNN search

Let say we need to do reverse nearest neighbor search on
Rdnn tree for a query point q, then

1. For a leaf node, examine each point p in the node
such that the distance of the point p to q is less than
or equal to the nearest neighbor distance of point p
in the dataset, S. From this we can say p is at least
as close to q as to its nearest neighbor, then p is one
of the reverse nearest neighbors

2. For an internal node, compare the query point q

with each branch B=(ptr;Rect;maxdnn).By
definition of Rdnn - tree we know that all the points
in the subtree rooted at B are contained in Rect and
the distance from each point to its nearest neighbor
is not greater than maxdnn since maxdn-nis the
largest of them. Hence if D(q;Rect)> maxdnn, then
branch B need not to be visited otherwise call
RNN-Search(B.ptr , q).

NN Search
The algorithm applied to find NN for R- tree can be
applied to Rdnn - tree for the reason that Rdnn tree has
all the properties of R-tree. Moreover in Rdnn tree , if
the distance of the point p from the querying point q is
less than half the distance of nearest neighbor of point p
then we can safely say p is the nearest neighbor of q in
data set S. This helps in pruning the extra branches
during the branch-and-bound search making the
algorithm more efficient and faster.

Experiments and Results
The author implemented and compared the RNN - tree
method using R-tree and Rdnn-tree on systems with
configurations as 2.5 GHz , Pentium II processors , 512
RAM and running SCO UNIX as operating system. The
results are shown in the table.

1. Rdnn structure significantly outperformed the
index structures in, and typically requires only 1-2
leaf access to locate the RNNs. From the figure 1
we can observe, in 2D cases the RNN tree
approach took 20 leaf access for the data set having
1 lakh items whereas Rdnn -tree took only 2 leaf

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 3, Issue 1, Feb-Mar, 2015

ISSN: 2320 – 8791 (Impact Factor: 1.479)

www.ijreat.org

 www.ijreat.org
 Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org) 130

access, thereby a significant improvement of over
90 percentage.

2. From the data in the Table 1, it is clear that Rdnn-
tree can perform NN queries efficiently. Thus in
dynamic cases , only one tree is required for both
the Nearest Neighbor(NN) and RNN queries

3. The Rdnn-tree allows to execute multiple NN and
RNN queries in one traversal of the tree, further
enhancing performance in the dynamic case.

In terms of disk access, the Rdnn tree structure provided 4-
5 times better efficiency than the RNN tree in the two
dimensional data.

6.3 A density based algorithm for discovering
clusters in spatial databases with noise

The task considered in this paper is class identification
i.e. the grouping of the objects of a database into
meaningful subclasses
.It requires one input parameter and supports the user in deter-
mining an appropriate value for it. It discovers clusters of
arbitrary shape. Here DBSCAN has implemented on the basis
of R*- tree.

 Figure 10: Comparison of NN queries performance

All experiments have been run on HP 735/100 workstations
with the help of synthetic data and the database of the SEQUOIA
2000 benchmark.
Positive aspects-
i. Faster ii. Efficient iii. Applicable for large database
iv. Applicable on arbitrary shape. v. Extendable for polygons
over point objects.
Points missed: i. High dimensional data not considered. ii.
It is only about static rather than moving obstacles.

6.4 Algorithm for characterization and trend
detection in spatial databases

In this algorithm it has observed that for spatial
characterization, it is important that class membership of a
database object is not only determined by its non-spatial
attributes but also by the at-tributes of objects in its

neighborhood. In this paper neighbor-hood relationship is
considered as centered point of discussion. With the help
Of different databases, various local and global trends have
detected.

Spatial Trend Detection

Spatial trend is defined as a regular change of one or more
non-spatial attributes when moving away from a given start
object o.A trend can be positive trend, negative (linear)
trend as well as a situation where no significant (linear)
trend is observed. Neighborhood paths starting from o are
considered and linear regression analysis is performed on
the respective attribute values for the objects of a
neighborhood path to describe the regularity of change. A
Linear regression is used, since it is efficient and often the
influence of some phenomenon to its neighborhood is either
linear or can be transformed into a linear model, e.g.
exponential regression. The correlation of the observed
attribute values with the values predicted by the regression
function yields a measure of confidence for the discovered
trend.

Algorithm
Let g be a neighborhood graph, o an object (node) in g, attr
be a subset of all non-spatial attributes, t be a type of
function, e.g. linear or exponential, used for the regression
and let filter be one of the filters for neighborhood paths.

Figure 11: Performance of both trend

algorithm

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 3, Issue 1, Feb-Mar, 2015

ISSN: 2320 – 8791 (Impact Factor: 1.479)

www.ijreat.org

 www.ijreat.org
 Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org) 131

Figure 12: The steps of trend detection in a geographic

information system

Spatial trend detection Algo discovers the set of all
neighborhood paths in g starting from o and having
of type t in attributes attr with a correlation of at least min-
conf. The paths must satisfy the filter and their length must
be between min-length and max-length.

1. Global Trend Algo creates all neighborhood paths
of the same length simultaneously - starting with
min-length and continuing until max-length. The
regression is performed once for each of these sets
of all paths of the same length. If no trend of length
l with correlation ¸ min-conf is detected then the
path extensions of length l+1, l+2, ---, max-length
are not created. The algorithm returns the
significant spatial trend with the maximum length.

2. Local Trend Algo performs a regression once for
each of the neighborhood paths with length min-
length and a path is only extended further if it has
a significant trend. The algorithm returns two sets
of paths showing a significant spatial trend, a set of
positive trends and a set of negative trends.

6.5 Density connected sets and their application for
trend detection in spatial databases.

In this paper, the concept of density connected sets has
been introduced to discover the trends in a spatial
database. Also an algorithm which is generalized form of
DBSCAN has been pro-posed having following
properties.(1) any symmetric predicate can be used to
define the neighborhood of an object allowing a natural
definition in the case of spatially extended objects such as
polygons, and (2) the cardinality function for a set of
neighboring objects may take into account the non-spatial
attributes of the objects as a means of assigning
application specific weights.

Algorithm and Trend Detection in GIS (Geographic
Information System)
A geographic database having both spatial and non-
spatial data information with its administrative units such
as communities, its natural facilities such as the
mountains and its infrastructure such as roads has been
considered. The database contains the ATKIS 500 data
and the Bavarian part of the statistical data obtained by
the German census of 1987.For trend detection , SAND
(partial And Non-spatial Database) architecture is used to
store spatial extension of all objects using R* tree
structure and the non-spatial attributes of the
communities managed by a relational database
management system.
The Bavaria database may be used, e.g., by economic
geographers to discover different types of knowledge. In
the following, we discuss the tasks of spatial
classification and spatial trend detection.
Spatial classification should discover rules predicting the
class membership of some object based on the spatial and
non-spatial attributes of the object and its neighbors. for
example:
if there is some agglomeration of cities, then this

agglomeration neighbors a highway (confidence 75 %)
A spatial trend as a pattern of systematic change of one
or several non-spatial attributes in 2D or 3D space. To
discover spatial trends of the economic power, following
steps needs to be followed as follows:

1. To discover local extrema of some non-spatial
attributes such as the rate of unemployment.
Initially all the areas with a locally minimal rate of
unemployment are determined which are called
centers, e.g. the city of Munich. The theory of
central places claims that the attributes of such
centers influence the attributes of their
neighborhood to a degree which decreases with
increasing distance. E.g., in general it is easy to
commute from some community to a close by center
thus implying a low rate of unemployment in this
community.

2. To determine both theoretical and observed trend

of non-spatial attributes when moving away from
the centers the theoretical trend of the rate of
unemployment in the neighborhood of the centers

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 3, Issue 1, Feb-Mar, 2015

ISSN: 2320 – 8791 (Impact Factor: 1.479)

www.ijreat.org

 www.ijreat.org
 Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org) 132

is calculated.

when moving away from Munich rate of

unemployment increases (confidence 86 %)

3. To discover deviations of the observed trend from
the theoretical trend
If the deviations from the theoretical trends
significantly differ in length, then the longer one
discovered is returned, e.g. indicating the direction
of a deviation.

when moving away from Munich in south-west

direction, then the rate of unemployment is stable

(confidence 97 %)

4. To explain the deviations by other spatial objects
(e.g. by some infrastructure) in that area and
direction.
The goal of the fourth step is to explain these
deviations. E.g. if some community is relatively far
away from a center, but is well connected to it by
train, the rate of unemployment in this community
is not as high as theoretically expected.

A simple method for detecting spatial trends based on
GDBSCAN has been explained. GDBSCAN is used to
extract density-connected sets of neighboring objects
having a similar value of the non-spatial attribute(s). In
order to define the similarity on an at-tribute, the domain is
partitioned into a number of disjoint classes and only the
values in the same class similar to each other are considered.
The sets with the highest or lowest attribute value(s) are
most interesting and are called influence regions, i.e. the
maximal neighborhood of a center having a similar value in
the non-spatial attribute(s) as the center itself. Then, the
resulting influence region is compared to the circular region
representing the theoretical trend to obtain a possible
deviation. Different methods may be used to accomplish
this comparison, e.g. difference-based or approximation-
based methods. A different-based method calculates the
difference of both, the observed influence region and the
theoretical circular region, thus returning some region
indicating the location of a possible deviation. An
approximation-based method calculates the optimal
approximating ellipsoid of the observed influence region. If
the two main axes of the ellipsoid significantly differ in
length, then the longer one is returned indicating the
direction of a deviation.

Conclusion

GDBSCN algorithm is proposed to find interesting regions
for trend detection in a geographic database on Bavaria. A
spatial trend was defined as a pattern of systematic change
of one or several non-spatial attributes in 2D or 3D space.
On the basis of repeated trends of the databases certain
predictions are explained. Somewhere it has observed that
given algorithm is not able to give clear cut relations
between different datasets.

6.6 Extended algorithm for spatial characterization
and discrimination rules

In this paper, a new spatial data mining algorithm for both
characterization and discrimination rules have been
proposed. A characterization rule is an assertion which
characterizes a concept satisfied by all or a majority number
of the examples in the class undergoing learning (called the
target class).A discrimination rule is an assertion which
discriminates a concept of the class being learned from
other classes (called contrasting classes).In medical science
for diagnosis of diseases, it is very important and usable.
In this paper, proposed algorithm is very much suitable for
identification of weather patterns. In this algorithm, the
characteristics of some spatial objects can be found as well
as what the characteristics of that spatial objects
discriminate from other contrast spatial objects can also be
found.

Positive aspects of this algorithms are:

1. It extracts not only the properties of target and
contrast objects but also the properties of their
neighbors as they impact on the characteristics of all
objects.

2. It shows successful implementation of general frame
work for SPDM.

3. This algorithm is more suitable for medical and
weather applications.

7. Spatial data analysis using map
Reduce (MR) and parallel DBMS

Two paradigms exist to query over large scale spatial data
- Map Reduce and parallel database. In our paper, we have
described and compared both the paradigms in terms of
performance and complexity. Map Reduce is one of the

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 3, Issue 1, Feb-Mar, 2015

ISSN: 2320 – 8791 (Impact Factor: 1.479)

www.ijreat.org

 www.ijreat.org
 Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org) 133

simplest and best known tool available through which one
can easily write distributed programs. But at the same time
, there are dozens of parallel database systems like
Teredata , AsterData , Netezza , Dataupio , Oracle(via
Exadata) are available in the market over last two decades
and provide high level programming environment. Also it
is possible to rewrite any parallel processing task as either
a set of database queries or a set of Map reduce jobs. So
the question arises what are the key difference between
these two approaches - MapRe-duce and parallel database
systems.

7.1 Analysis
7.1.1 Schema Support

Parallel DBMSs require data to fit into the relational
paradigm of rows and columns. In contrast, the MR model
does not require that data files adhere to a schema defined
using the relational data model. That is, the MR
programmer is free to structure their data in any manner or
even to have no structure at all.
One might think that the absence of a rigid schema
automatically makes MR the preferable option. For
example, SQL is often criticized for its requirement that
the programmer must specify the "shape" of the data in a
data definition facility. On the other hand, the MR
programmer must often write a custom parser in order to
derive the appropriate semantics for their input records,
which is at least an equivalent amount of work. But there
are also other potential problems with not using a schema
for large data sets.

Whatever structure exists in MR input files must be built
into the Map and Reduce programs. Existing MR
implementations pro-vide built-in functionality to handle
simple key/value pair for-mats, but the programmer must
explicitly write support for more complex data structures,
such as compound keys. This is possibly an acceptable
approach if a MR data set is not accessed by multiple
applications. If such data sharing exists, however, a second
programmer must decipher the code written by the first
programmer to decide how to process the input file. A
better approach, followed by all SQL DBMSs, is to
separate the schema from the application and store it in a
set of system catalogs that can be queried.

But even if the schema is separated from the application and
made available to multiple MR programs through a

description facility, the developers must also agree on a
single schema. This obviously requires some commitment
to a data model or models, and the input files must obey this
commitment as it is cumbersome to modify data attributes
once the files are created
Once the programmers agree on the structure of data,
something or someone must ensure that any data added or
modified does not violate integrity or other high-level
constraints (e.g., employee salaries must be non-negative).
Such conditions must be known and explicitly adhered to
by all programmers modifying a particular data set; a MR
framework and its underlying distributed storage system
has no knowledge of these rules, and thus allows input data
to be easily corrupted with bad data. By again separating
such constraints from the application and enforcing them
automatically by the run time system, as is done by all SQL
DBMSs, the integrity of the data is enforced without
additional work on the programmer’s behalf
In summary, when no sharing is anticipated, the MR
paradigm is quite inaccessible´. If sharing is needed,
however, then we argue that it is advantageous for the
programmer to use a data description language and factor
schema definitions and integrity constraints out of
application programs. This information should be installed
in common system catalogs accessible to the appropriate
users and applications.

7.1.2 Data Distribution

Parallel DBMSs use knowledge of data distribution and
location to their advantage: a parallel query optimizer
strives to balance computational workloads while
minimizing the amount data trans-mitted over the network
connecting the nodes of the cluster
Aside from the initial decision on where to schedule Map
instances, a MR programmer must perform these tasks
manually. For ex-ample, suppose a user writes a MR
program to process a collection of documents in two parts.
First, the Map function scans the documents and creates a
histogram of frequently occurring words. The documents
are then passed to a Reduce function that groups files by
their site of origin. Using this data, the user, or another user
building on the first user’s work, now wants to find sites
with a document that contains more than five occurrences
of the word ’Google’ or the word ’IBM’. In the naive
implementation of this query, where the Map is executed
over the accumulated statistics, the filtration is done after
the statistics for all documents are computed and shipped to

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 3, Issue 1, Feb-Mar, 2015

ISSN: 2320 – 8791 (Impact Factor: 1.479)

www.ijreat.org

 www.ijreat.org
 Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org) 134

reduce workers, even though only a small subset of
documents satisfy the keyword filter
SQL view and select queries perform a similar computation:

CREATE VIEW Keywords AS
SELECT siteid, docid, word, COUNT(*) AS
wordcount FROM Documents GROUP BY
siteid, docid, word; SELECT DISTINCT siteid
FROM Keywords
WHERE (word = ’IBM’ OR word = ’Google’) AND
wordcount > 5;

A modern DBMS would rewrite the second query such that
the view definition is substituted for the Keywords table in
the FROM clause. Then, the optimizer can push the
WHERE clause in the query down so that it is applied to the
Documents table before the COUNT is computed,
substantially reducing computation. If the documents are
spread across multiple nodes, then this filter can be applied
on each node before documents belonging to the same site
are grouped together, generating much less network I/O.

7.1.3 Indexes
All modern DBMSs use hash or B-tree indexes to
accelerate access to data. If one is looking for a subset of
records (e.g., employees with a salary greater than Rs
100,000), then using a proper index reduces the scope of
the search dramatically. Most database systems also
support multiple indexes per table. Thus, the query
optimizer can decide which index to use for each query or
whether to simply perform a brute-force sequential search.
Because the MR model is so simple, MR frameworks do
not pro-vide built-in indexes. The programmer must
implement any indexes that they may desire to speed up
access to the data inside of their application. This is not
easily accomplished, as the frame-work’s data fetching
mechanisms must also be instrumented to use these
indexes when pushing data to running Map instances.
Once more, this is an acceptable strategy if the indexes do
not need to be shared between multiple programmers,
despite requiring every MR programmer re-implement the
same basic functionality

If sharing is needed, however, then the specifications of
what indexes are present and how to use them must be
transferred between programmers. It is again preferable to
store this index information in a standard format in the
system catalogs, so that programmers can query this
structure to discover such knowledge.

7.1.4 Performance

There is a potentially serious performance problem related
to MR’s handling of data transfer between Map and Reduce
jobs. Recall that each of the N Map instances produces M
output files, each destined for a different Reduce instance.
These files are written to the local disk on the node
executing each particular Map instance. If N is 1000 and M
is 500, the Map phase of the program produces 500,000
local files. When the Reduce phase starts, each of the 500
Reduce instances needs to read its 1000 in-put files and
must use a file-transfer protocol to transfer each of its input
files from the nodes on which the Map instances were run.
With 100s of Reduce instances running simultaneously, it
is inevitable that two or more Reduce instances will attempt
to read their input files from the same map node
simultaneously, inducing large numbers of disk seeks and
slowing the effective disk transfer rate. This is why parallel
database systems do not materialize their split files and
instead use a push approach to transfer data instead of a
pull.

7.1.5 Flexibility

Despite its widespread adoption, SQL is routinely criticized
for its insufficient expressive prowess. Some believe that it
was a mistake for the database research community in the
1970s to focus on data sub-languages that could be
embedded in any programming language, rather than
adding high-level data access to all programming
languages. Fortunately, new application frame-works, such
as Ruby on Rails and LINQ have started to reverse this
situation by leveraging new programming language
functionality to implement an object-relational mapping
pattern. These programming environments allow
developers to benefit from the robustness of DBMS
technologies without the burden of writing complex SQL.
Proponents of the MR model argue that SQL does not
facilitate the desired generality that MR provides. But
almost all of the major DBMS products (commercial and
open-source) now provide support for user-defined
functions, stored procedures, and user-defined aggregates in
SQL. Although this does not have the full generality of MR,
it does improve the flexibility of database systems.

7.1.6 Fault Tolerance

The MR frameworks provide a more sophisticated failure
model than parallel DBMSs. While both classes of systems
use some form of replication to deal with disk failures, MR
is far more adept at handling node failures during the
execution of a MR computation. In a MR system, if a unit
of work (i.e., processing a block of data) fails, then the MR
scheduler can automatically restart the task on an alternate

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 3, Issue 1, Feb-Mar, 2015

ISSN: 2320 – 8791 (Impact Factor: 1.479)

www.ijreat.org

 www.ijreat.org
 Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org) 135

node. Part of the inaccessibility´ is the result of the fact that
the output files of the Map phase are materialized locally
instead of being streamed to the nodes running the Re-duce
tasks. Similarly, pipelines of MR jobs, materialize
intermediate results to files each step of the way. This
differs from parallel DBMSs, which have larger granules of
work (i.e., transactions) that are restarted in the event of a
failure. Part of the reason for this approach is that DBMSs
avoid saving intermediate results to disk whenever possible.
Thus, if a single node fails during a long running query in a
DBMS, the entire query must be completely restarted.
8. Performance analysis

 Figure 13: Data Loading
The three major systems Hadoop for Map Reduce(MR),
DBMS-X for parallel DBMS and Vertica were deployed on
a 100-node cluster such that each node has a single 2.40
GHz Intel Core 2 Duo processor running 64-bit Red Hat
Enterprise Linux 5 with 4GB RAM.
8.1 Benchmark Test

Data Loading

The results for loading 1TB/cluster data sets is shown
in the figure 13.

The most striking feature that can be observed from
the figure is the difference in performance of DBMS-
X compared to Hadoop and Vertica. Despite issuing
the LOAD command on each node in parallel, the data
is actually loaded on each node sequentially resulting
in increased load time with increasing amount of data.

Task Execution
The performance results for the three systems for this task
is shown as below:

It can be clearly observed that DBMS-X and Hadoop per-
formed slower than Vertica by a factor of more than two.
However, Hadoop and DBMS-X performs approximately
the same, since Hadoop’s startup cost is amortized across
the increased amount of data processing for this experiment.

Selection Task
The Selection task is a lightweight filter to find the
pageURLs in the Rankings table (1GB/node) with a
pageRank above threshold, 10.
The DBMSs execute the selection task using the following
simple SQL statement:
SELECT pageURL, pageRank

FROM Rankings WHERE pageRank > X;

Figure 15: Selection Task Results

Figure demonstrate that the parallel DBMSs
outperform Hadoop by a rather significant factor across
all cluster scaling levels. Although the relative
performance of all systems degrade as both the number
of nodes and the total amount of data increase, Hadoop
is most affected.
This is due to Hadoop’s increased start-up costs as more
nodes are added to the cluster, which takes up a
proportionately larger fraction of total query time for
short-running queries. Another reason can be is that both
Vertica and DBMS-X use an index on the pageRank
column and store the Rankings table sorted by pageRank
4. Aggregation Task

This task requires each system to calculate the total
adRevenue generated for each sourceIP in the
UserVisits table (20GB/node), grouped by the
sourceIP column.
The SQL commands to calculate the total adRevenue is
straight-forward:

SELECT sourceIP, SUM (adRevenue) FROM UserVisits
GROUP BY sourceIP;

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 3, Issue 1, Feb-Mar, 2015

ISSN: 2320 – 8791 (Impact Factor: 1.479)

www.ijreat.org

 www.ijreat.org
 Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org) 136

 Figure 16: Aggregation Task Results

Clearly both DBMSs i.e. DBMS-X and Vertica
outperformed Hadoop. The DBMSs execute these queries
by having each node scan its local table, extract the
sourceIP and adRevenue fields, and perform a local group
by. These local groups are then merged at the query
coordinator, which outputs results to the user. Thus, unlike
Hadoop, their runtime is dominated by the cost to transmit
the large number of local groups and merge them at the
coordinator.

9. Discussions
In this report we have presented the various data
structures for indexing with their usability for querying in
spatial data. Various algorithms and methods developed
have been discussed in brief and for detail explanation
bibliography may be referred. Finally we dived into
parallel data mining and performed benchmark
performance test of three techniques i.e. Map Reduce,
Vertica and DBMS-X.

References

[1] A Comparison of Approaches to Large-Scale Data
Analysis SIGMOD ’09 Proceedings of the 2009 ACM
SIGMOD International Conference on Management of
data

[2] Algorithms for processing K-closest-pair queries in
spatial databases. Data and Knowledge Engineering 49
(2004).

[3] An index structure for efficient reverse nearest neighbor
queries in Data Engineering, 2001. Proceedings. 17th
International Conference on 2001.

[4] Nearest Neighbor Queries SIGMOD ’95 Proceedings of
the 1995 ACM SIGMOD international conference on
Management of data

[5]Closest Pair Queries in Spatial Databases. SIGMOD ’00
Proceedings of the 2000 ACM SIGMOD international
conference on Management of data

[6] R-TREES. A DYNAMIC INDEX STRUCTURE FOR
SPATIAL SEARCHING.SIGMOD ’84 Proceedings of
the 1984 ACM SIGMOD international conference on
Management of data

[7] R*-tree: An Efficient and Robust Access Method for
Points and Rectangles. Proc. ACM SIGMOD Int. Con.
on Management of Data, Atlantic City, NJ

[8] Algorithms for Characterization and Trend Detection in
Spatial Databases Published in Proceedings of 4th
International Conference on Knowledge Discovery and
Data Mining

[9] Density-Connected Sets and their Application for Trend
Detection in Spatial Databases.PROC. 3RD INT.
CONF. KNOWLEDGE DISCOVERY AND DATA
MINING (KDD’97)

[10] An Introduction to Spatial Database Systems. Special
Issue on Spatial Database Systems of the VLDB Journal
(Vol. 3, No. 4, October 1994)

[11] A Density-Based Algorithm for Discovering Clusters
in Large Spatial Databases with Noise. Published in
Proceedings of 2nd International Conference on
Knowledge Discovery and Data Mining (KDD-96)

[12]Gueting, R.H. 1994. An Introduction to Spatial
Database Systems. VLDB Journal 3(4).

