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Abstract 
Mining data from large amounts of spatial data is very difficult 
because of the huge amounts of spatial data collected from satellite 
or local cameras for many important and sophisticated areas like 
designing of road maps for different regions or states, countries, 
cloud cover, traffic control or GPS etc. Thus owing to urgent 
practical, social and environmental needs, knowledge discovery in 
spatial data has become important and one of the rapidly growing 
field. In this paper, an overview of common knowledge discovery 
algorithms and a comparative study of these algorithms have been 
done. 
Keywords: Spatial Data, Data Mining, Map reduce. 

1. Introduction 

Spatial data are the data related to object that occupy space. 
Aspatial database stores the spatial objects represented by 
spatial data types and spatial relationships among such 
objects the number and size of spatial database e.g. for geo 
marketing, traffic control or environmental studies, medical 
diagnosis, weather prediction are rapidly growing which 
result in an increasing need to store huge amount of data 
and retrieve information that is both convenient and 
efficient. 
A very interesting and efficient method has introduced for 
this purpose and it is called as Spatial Data Querying. 
Thus spatial data querying can be summarized as: 

1. Extracting interesting spatial patterns and features 
2. Capturing intrinsic relationships between spatial 

and non-spatial data 
3. Presenting data regularity concisely and at higher 

conceptual levels and 
4. Helping to reorganize spatial databases to 

accommodate data semantics, as well as to achieve 
better performance 

This report deals with spatial data structures for 
indexing and with their usability for knowledge discovery 
in spatial data. Huge amount of data processed in spatial 
data mining requires using some indexing structures to 
speed up the mining process which are described in this 
paper. Then the various algorithms and methods for 
processing and analyzing spatial data are described and a  

comparative study of these algorithms is done. We then 
explored Parallel Data Mining, an upcoming field. Three 
new frameworks Map Reduce, DBMS-X and Vertica are 
introduced and a comparison of these techniques has been 
done. Finally benchmark performances of them are 
presented. 

2. Database sources and issues 

With the advancement in technology and tools, spatial data 
maybe collected in huge amount from different resources 
for various applications ranging from remote sensing and 
satellite telemetry systems, to computer cartography, 
medical diagnosis, weather analysis and prediction, and all 
kinds of environmental planning. Various national and 
international agencies are also providing spatial data in 
different dimensions. Most common data sources are 
satellite images, medical images, human body’s protein 
structure and all those data who can be represented in the 
form of cuboids, polygon, cylinder etc. Various sites are 
also available for collection of GIS data for example Google 
earth, visible earth (NASA),JSC digital image collection 
(NASA) ,Global land cover facility are also available for 
collection of spatial data. Basically spatial data include 
geographic data such as maps and associated information, 
and computer aided design data such as integrated circuit 
design or building designs. It has observed that 2D database 
are not more efficient in storing, indexing and queuing of 
data on the basis of spatial locations .Additionally for 2D 
databases, we cannot use standard index structures, such as 
B-trees or hash indices, to answer such a query efficiently. 
So it is recommended that we should work for higher 
dimensional data. 

3. Spatial data mining and spatial data 

querying 

Analysis is an important part of GIS which allows spatial 
operations with data (e. g. network analysis or filtering of 
raster data), measuring functions (e.g. distance, direction 
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between objects), statistical analyses or terrain model 
analysis (e. g. visibility analysis). 
Spatial data mining is a special kind of data mining. The 
main difference between data mining and spatial data 
mining is that in spatial data mining tasks we use not only 
non-spatial attributes(as it is usual in data mining in non-
spatial data), but also spatial attributes. 
Basic tasks of spatial data mining are: 
 
data set - First a particular application like weather 
forecasting, traffic control for which analyses needs to be 
performed has to be identified and then the data set may be 
collected using satellite or GPS or other sensors for 
processing. 
 
Data processing - Analyst may select, filter, aggregate, 
sample, clean and/or transform data into much more 
understandable form. Unwanted and useless portions may 
be cut from the existing data hence to improve the 
productivity and applicability of the data. 
 
Prediction - Prediction means to give some outcomes in 
advance on the basis of previous history or patterns of data 
items. Values of specific attributes of the data items may 
also be calculated accurately with iterative methods and 
different samples of data. 
 
Regression - Given a set of data items, regression identifies 
dependency y of some attribute values upon the values of 
other attributes in the same item and apply these values on 
other data items or records. 
 
Classification - Given a set of predefined categorical classes, 
determine to which of these classes a specific data item 
belongs. For example, in weather prediction system we 
classify satellite images into different classes on the basis of 
some common properties and patterns.  
 
Clustering - given a set of data items, group items that are 
similar. For example, given a set of satellite images, identify 
subgroup of objects of patterns (colored, non colored, size, 
shape)and their behavior. 
 
Link Analysis - Given a set of data items identify 
relationships b/w attributes and items such as the presence 
of one pattern implies the presence of another pattern.  
 
Model visualization - Visualization plays a very important 
role in understanding and demonstration the desired task 
properly. Visualization techniques may range from simple 
scatter plots and histogram plots over parallel coordinates 

to 3D data items. 
 
Result testing, verification and refinement - This step 
includes verifying and testing the results got from above 
steps and refining them for better accuracy and efficiency.  
Spatial data querying on the other hand is a stage in the 
whole process of spatial data mining and can be explained 
in detail as: 

 
• Classification: finds a set of rules which determine 

the class of the classified object according to its 
attributes e. g. "IF population of city = high AND 
economic power of city =high THEN 
unemployment of city = low" or classification of a 
pixel into one of classes, e. g. water, field, forest. 
 

• Association rules: Association rules describe 
patterns, which are often in the database. The 
association rule has the following form: A! B(s %; 
c %), where s is the support of the rule (the 
probability, that A and B hold together in all the 
possible cases) and c is the confidence (the 
conditional probability that B is true under the 
condition of A e. g. "if the city is large, it is near 
the river (with probability 80 %)". 

 
• Characteristic rules: describe some part of 

database e.g. "bridge is an object in the place 
where a road crosses a river." 
 

• Discriminant rules: describe differences between 
two parts of database e. g. find differences between 
cities with high and low unemployment rate. 

 
• Clustering: groups the object from database into 

clusters in such a way that object in one cluster are 
similar and objects from different clusters are 
dissimilar e. g. we can find clusters of cities with 
similar level of unemployment or we can cluster 
pixels into similarity classes based on spectral 
characteristics. 
 

Figure 1: Quad Tree 
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• Trend detection: finds trends in database. A trend 
is a temporal pattern in some time series data. A 
spatial trend is defined as a pattern of change of a 
non-spatial attribute in the neighborhood of a 
spatial object e. g. "when moving away from Brno, 
the unemployment rate increases" or we can find 
changes of pixel classification of a given area in 
the last five years. 

 
 
 
 
 

 

 

                       Figure 2: k-d Tree 

4. Data structures used in querying spatial 

data 

4.1 Quad tree 

 

 

 

 

 

 

 

 

 

The quad tree is used to index 2D space. Each internal node 
of the tree splits the space into four disjoint subspaces 
(called NW,NE, SW, SE) according to the axes. Each of 
these subspaces is split recursively until there is at most one 
object inside each of them. The quad tree is not balanced 
and its balance depends on the data distribution and the 
order of inserting the points. 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.2 k -d -tree 
 
This method uses a binary tree to split k - dimensional 
space. This tree splits the space into two subspaces 
according to one of the coordinates of the splitting point.  
Let level (nod) be the length of the path from the root to 
the node nod and suppose the axes are numbered from 0 to 
k - 1. At the level, level (nod) in every node the space is 
split according to the coordinate number (level (nod) mod 
k). 
 
Inserting and searching are similar to the binary trees. We 
only have to compare nodes according to the coordinate 
number (level (nod) mod k). This structure has a 
disadvantage that it is sensitive to the order in which the 
objects are inserted. 

 

4.3 R-Tree 
 

A spatial database consists of a collection of tuples 
representing spatial objects, and each tuple has a 
unique identifier which can be used to retrieve it. An 
index based on object’s spatial locations is desirable, 
but classical one dimensional database indexing 
structures are not appropriate to multi-dimensional 
spatial searching. Also, structures based on exact 
matching of values, such as hash tables, are not useful 
because a range search 1s requested. Since the search 
space is multidimensional, structures using one 
dimensional ordering of key values, such as B-trees 
and ISAM indexes, also fails. 
 

       Figure 3: R-tree for 2D rectangles 

                       Figure 4 
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Structure An R-tree 1s a height-balanced tree similar 
to a B-tree with index records in its leaf nodes 
containing pointers to data objects. Let M be the 
maximum number of entries that will fit at one node 
and let m = M/2 be a parameter specifying the 
maximum number of entries in a node 
 

1. Every leaf node contains between m and M index 
records unless it is the root.   

2. For each index record , (I, tuple-identifier) in a leaf 
node, I   
1s the smallest rectangle that spatially contains the n-
dimensional data object represented by the indicated 
tuple.   

3. Every non-leaf node has between m and M 
children unless it is the root.   

4. For each entry (I, child-pointer) in a non-leaf 
node, I 1s the smallest rectangle that spatially 
contains the rectangles in the child node   

5. The root node has at least two children unless it is a 
leaf.   

     6. All leaves appear on the same level. 

 
Search 
 
The input is a search rectangle (Query box). Searching 
is quite similar to searching in a B+ tree. The search 
starts from the root node of the tree. Every internal 
node contains a set of rectangles and pointers to the 
corresponding child node and every leaf node contains 
the rectangles of spatial objects (the pointer to some 
spatial object can be there). For every rectangle in a 
node, it has to be decided if it overlaps the search 
rectangle or not. If yes, the corresponding child node 

has to be searched also. Searching is done like this in 
a recursive manner until all overlapping nodes have 
been traversed. When a leaf node is reached, the 
contained bounding boxes (rectangles) are tested 
against the search rectangle and their objects (if there 
are any) are put into the result set if they lie within the 
search rectangle. 
 
A recursive process starting from the root result = f 
For a node N  
if N is a leaf node, then result = 

result [ N else // N is a non-leaf node  
for each child N’ of N  
if the rectangle of N’ contains q then recursively 

search N’ 

 

Insertion To insert an object, the tree is traversed 
recursively from the root node. At each step, all rectangles 
in the current directory node are examined, and a candidate 
is chosen using a heuristic such as choosing the rectangle 
which requires least enlargement. The search then 
descends into this page, until reaching a leaf node. If the 
leaf node is full, it must be split before the insertion is 
made. Again, since an exhaustive search is too expensive, 
a heuristic is employed to split the node into two. Adding 
the newly created node to the previous level, this level can 
again overflow, and these overflows can propagate up to 
the root node; when this node also overflows, a new root 
node is created and the tree has increased in height. 
 
 
Splitting an overflowing node 
 
Since redistributing all objects of a node into two nodes has 
an exponential number of options, a heuristic needs to be 
employed to find the best split. In the classic R-tree, 
Guttman proposed two such heuristics, called Quadratic 
Split and Linear Split. In quadratic split, the algorithm 
searches the pair of rectangles that is the worst combination 
to have in the same node, and puts them as initial objects 
into the two new groups. It then searches the entry which 
has the strongest preference for one of the groups (in terms 
of area increase) and assigns the object to this group until 
all objects are assigned (satisfying the minimum fill). 
 
 
 

Figure 5: Data objects in the map are 

represented by MBR 
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4.4 R+ Tree  
 
 

 

 

 

 
R+ tree is an extension of the R tree. In contrast to R tree 
bounding rectangles of the nodes at one level don’t overlap 
in this structure. This feature decreases the number of 
searched branches of the tree and reduces the time 
consumption. In the R+-tree it is allowed to split data 
objects so that different parts of one object can be stored 
in more nodes of one tree level. If a rectangle over-laps 
another one, we decompose it into a group of non-
overlapping rectangles which cover the same data objects. 
This increases a space consumption but allows zero 
overlap of the nodes and therefore reduces the time 
consumption. 
 
R+ trees differ from R trees in that 
 

• Nodes are not guaranteed to be at least half filled   
• The entries of any internal node do not overlap   
• An object ID may be stored in more than one leaf 

node  
 
Advantages over R tree 
 

• Because nodes are not overlapped with each 
other, point query performance benefits since all 
spatial regions are covered by at most one node.   

• A single path is followed and fewer nodes are 
visited than with the R-tree.  

 
Disadvantages over R tree 
 

• Since rectangles are duplicated, an R+ tree can 
be larger than an R tree built on same data set.   

• Construction and maintenance of R+ trees is 
more complex than the construction and 
maintenance of R trees and other variants of the 
R tree. 

 
4.5 R* - Trees 
 
R*-trees are a variant of R-trees used for indexing spatial information.  
Operations on R* tree in SQLite Database 
 

1. Creating An R*Tree Index   
Consider creating a 2D R*Tree index for use in spatial queries:  

 
CREATE VIRTUAL TABLE demoindex USING rtree( 
id, – Integer primary key  
minX, maxX, – Min and Max X coordinate 
minY, maxY – Min and Max Y coordinate); 

 
2. Populating An R*Tree Index 

 
 

INSERT INTO demoindex 
VALUES( 1, – Primary key  
-80.7749, -80.7747, – Longitude range 
35.3776, 35.3778 – Latitude range); 

 
3. Querying An R*Tree Index   

To find all elements of the index that are contained within the 
vicinity of given point we can write query like:  

 
SELECT id FROM demoindex  
WHERE maxX>=-81.08 AND minX<=-80.58  
AND maxY>=35.00 AND minY<=35.44; 

 
 
 
Difference between R*-trees and R-trees 
 
 
 

1. Optimization in ChooseSubTree module for leaf 
nodes 

 
2. Revised Node-Split Algorithm. The split heuristic 

is improved to produce pages that are more 
rectangular and thus better for many applications. 

 
3. Forced Reinsertion at Node Overflow which 

optimizes the existing tree, but increases 
complexity. 

 
4. Completely Dynamic.  

 
5. Supports point and spatial data efficiently at the 

same time.  
 

6. Implementation cost of R* tree is slightly higher 
than that of other R-trees. 
 
 

Figure 6: R+ tree 
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4.6 Neighborhood graphs  
Neighborhood graphs and neighborhood paths 
Definition: Neighborhood graph G for spatial relation 
neighbor=2is a graph G(U,H) where U is a set of nodes and 
H is a set of edges. Each node represents an object and two 
nodes N1, N2 are connected by edge iff the objects 
corresponding to N1 and N2 are in the relation neighbor.  
The relation neighbor can be: 

 
1. topological relation, e. g. two objects touch, cover, are 

equal 
 

2. metric relation, e. g. distance of the objects is less than 
d 

 
3. direction relation, e.g. north, south, east, west 

 
4. any conjunction or disjunction of previous relations  

 
Neighborhood graph is oriented. Thus it can happen that 
object A is a neighbor of the object B but object B is not a 
neighbor of the object A.  
Definition: Neighborhood path for the neighborhood 
graph G is an ordered list of nodes from G where every two 
following nodes from the path are connected by some edge 
from G, i. e. for the path [n0, n1,....., nk¡1] there must be 
edges (ni , niÅ1) for every 0· i < k-1. Length of the path is a 
sum of edges in the path. 
 
Elementary operations on the neighborhood graphs 
 
Elementary operations on the neighborhood graphs are: 
 
getGraph(data, neighbor)- returns the neighborhood 
graph G representing the relation neighbor on the objects 
from the table data. The relation neighbor can be one of the 
spatial relations listed in the definition of the neighborhood 
graph. 
 
getNeighborhood(G, o, pred) - returns the set of the 
objects connected to the object o by some of the edges 
from the graph G. The predicate pred must hold for these 
objects. This condition is used if we want to get only some 
specific neighbors of the object o. The predicate pred may 
not necessarily be spatial. 
 
createPath(G, pred, i)- returns the set of all paths which 
consist of the nodes and edges from the graph G, their 
length is less than or equal to i and the predicate pred holds 
for them. Moreover these paths must not contain any cycles, 

i.e. every node from G can appear at most once in each path. 
 

4.7 MapReduce 
 
MapReduce is a programming model and an associated 
implementation for processing and generating large data 
sets. A Map Reduce program consist of only two functions 
Map and Reduce writ-ten by user to process key/value data 
pairs. 
Map, written by the user, takes an input pair and produces 
a set of intermediate key/value pairs. The MapReduce 
library groups together all intermediate values associated 
with the same intermediate key I and passes them to the 
Reduce function.  
The Reduce function, also written by the user, accepts an 
inter-mediate key I and a set of values for that key. It merges 
together these values to form a possibly smaller set of 
values. Typically just zero or one output value is produced 
per Reduce invocation Programs written in this functional 
style are automatically parallelized and executed on a large 
cluster of commodity machines. The run-time system takes 
care of the details of partitioning the input data, scheduling 
the program’s execution across a set of machines, handling 
machine failures, and managing the required inter-machine 
communication. This allow programmers without any 
experience with parallel and distributed systems to easily 
utilize the resources of a large distributed system.  
Input and Output types of a MapReduce job:  
(input) <k1, v1> -> map -><k2, v2> -> combine -><k2, 
v2> -> reduce -><k3, v3> (output) 

4.8 Parallel Database Systems 

The two key aspects that enable parallel execution are that 
(1) most (or even all) tables are partitioned over the nodes 
in a cluster and that (2) the system uses an optimizer that 
translates SQL commands into a query plan whose 
execution is divided amongst multiple nodes. Because 
programmers only need to specify their goal in a high level 
language, they are not burdened by the under-lying storage 
details, such as indexing options and join strategies. 
Consider a SQL command to filter the records in a table T1 
based on a predicate, along with a join to a second table T2 
with an aggregate computed on the result of the join. A 
basic sketch of how this command is processed in a parallel 
DBMS consists of three phases. Since the database will 
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have already stored T1 on some collection of the nodes 
partitioned on some attribute, the filter sub-query is first 
performed in parallel at these sites similar to the filtering 
performed in a Map function. Following this step, one of 
two common parallel join algorithms are employed based 
on the size of data tables. For example, if the number of 
records in T2 is small, then the DBMS could replicate it on 
all nodes when the data is first loaded. This allows the join 
to execute in parallel at all nodes. Following this, each node 
then computes the aggregate using its portion of the answer 
to the join. A final "roll-up" step is required to compute the 
final answer from these partial aggregates. 
 
If the size of the data in T2 is large, then T2’s contents will 
be distributed across multiple nodes. If these tables are 
partitioned on different attributes than those used in the 
join, the system will have to hash both T2 and the filtered 
version of T1 on the join attribute using a common hash 
function. The redistribution of both T2 and the filtered 
version of T1 to the nodes is similar to the processing that 
occurs between the Map and the Reduce functions. Once 
each node has the necessary data, it then performs a hash 
join and calculates the preliminary aggregate function. 

5. Queries on spatial data 

The key characteristic that makes a spatial database a 
powerful tool is its ability to manipulate spatial data, rather 
than simply to store and represent them. The basic form of 
such a database is answering queries related to the spatial 
properties of data. Some typical spatial queries are the 
following: 
 

1. A "Point Location Query" seeks for the objects that 
fall on a given point (e.g. the country where a specific 
city belongs).  

 
2. A "Range Query" seeks for the objects that are 

contained within a given region, usually expressed as 
a rectangle or a sphere (e.g. the pathways that cross a 
forest).  

 
3. A "Join Query" may take many forms. It involves two 

or more spatial datasets and discovers pairs (or tuples, 
in case of more than two datasets) of objects that 
satisfy a given spatial predicate (e.g. the pairs of boats 
and stormy areas, for boats sailing across a storm).  

 
4. The distance join was recently introduced to compute 

a subset of the Cartesian product of two datasets, 
specifying an order on the result based on distance 
(e.g. the pairs of hotels and archeological sites, 
ordered by driving distance up to 50 km between 
them).  

 
Finally, very common is the "Nearest Neighbor Query" that 
seeks for the objects residing more closely to a given object. 
In its simplest form, it discovers one such object (the nearest 
neighbor). Its generalization discovers K such objects (K 
nearest neighbors), for a given K (e.g. the K ambulances 
closer to a spot where an accident with K injured persons 
occurred). 

6. Algorithms and methods  

In this section we have presented the various queries 
possible on Spatial Data in detail. Also the experimental 
results are analyzed for spatial queries. 

6.1 Nearest Neighbor Queries  

A very common type of query in spatial data is to find the k 
nearest neighbor to a given object or point in space. A naive 
approach to solve this problem requires O(n2) time with no 
preprocessing to find the neighbor of all the points in the 
data set, S. The author has proposed a much better and 
efficient search algorithm using R- tree for processing exact 
k - nearest neighbor queries and introduced several metrics 
for ordering and pruning the R tree. 
 
NEAREST NEIGHBOR SEARCH USING R-TREES 
 
Metrics for Nearest Neighbor Search 
 
Let NP and NQ be two internal nodes of RP and RQ, 
respectively. Each of these nodes has an MBR that contains 
all the points that reside in the respective sub tree. In order 
for this rectangle to be the minimum bounding one, at least 
one point is located at each edge of the rectangle. Let MP 
and MQ represent the MBRs of NP and NQ, respectively. Let 
r1, r2, r3 and r4 be the four edges of MP and s1, s2, s3 and 
s4 be the four edges of MQ. By MINDIST(ri , si ) we denote 
the minimum distance between two points falling on riand 
si. Accordingly, by MAXDIST(ri, si) we denote the 
maximum distance between two points falling on ri and si . 
In the sequel, we extend definitions of metrics between a 
point and an MBR that appear in and define a set of useful 
metrics between two MBRs. In case MP and MQ are disjoint 
we can define a met-ric that expresses the minimum 
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possible distance of two points contained in different 
MBRs: 
 
 
 
 
 
 
 
 
 
 
 
MINMINDIST(MP , MQ) = mini,j MINDIST(ri, sj) 
 
In case the MBRs of the two nodes intersect, then 
MINMINDIST(MP , MQ) equals 0. In any case (intersecting 
or disjoint MBRs) we can define the metrics 
MINMAXDIST(MP , MQ) = mini,j MAXDIST(ri , si ) and 
 
MAXMAXDIST(MP , MQ) = maxi,j MAXDIST(ri , si ) 
 
MAXMAXDIST expresses the maximum possible 
distance of any two points contained in different MBRs. 
 
MINMAXDIST expresses an upper bound of distance for 
at least one pair of points. More specifically, there exists 
at least one pair of points (contained in different MBRs) 
with distance smaller than or equal to MINMAXDIST. In 
Figure, two MBRs and their MIN-MINDIST, 
MINMAXDIST and MAXMAXDIST distances are 
depicted. At least one point is located on each edge of each 
MBR.  
To summarize, for each pair (pi , qj ) of points, pi enclosed 
by MP and qj enclosed by MQ, it holds that 
 
MINMINDIST(MP , MQ) ·  dist(pi , qj )· 
MAXMAXDIST(MP , MQ)) 
 
Moreover, there exists at least one pair (pi , qj ) of 
points,pi enclosed by MP and qj enclosed by MQ, such that 
 
dist(pi , qj ) ·  MINMAXDIST(MP , MQ) 
 
Theorem 1 For a point P and an MBR R enclosing a set 
of objects say o1, o2, o3 , o4 ......, om then for any object o 
, MINDIST (P , R) ·  (P ,o). 
 
Theorem 2 For a point P and an MBR R enclosing a set 
of objects say o1, o2, o3 , o4 .... , om then for any object o , 
MINMAXDIST (P , R) ¸ (P ,o). 
 
Nearest Neighbor Search Algorithm 
 
We utilize the two theorems we developed to formulate 
the following three strategies to prune MBRs during the 

search: 

 
1. An MBR M with MINDIST(P,M) ¸ 

MINMAXDIST(P,M’) of another MBR M’ is 
discarded because it cannot contain the NN 
(theorems 1 and 2).We use this in downward 
pruning.  

 
2. An actual distance from P to a given object O 

which is greater than the MINMAXDIST(P,M) for 
an MBR M can be discarded. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

because M contains an object O’ which is nearer to P 
(theorem 2). This is used in upward pruning. 

 
3. Every MBR M with MINDIST(P,M) greater than the 
actual distance from P to a given object O is discarded 
because it cannot enclose an object nearer than O 
(theorem 1). We use this in upward pruning. 

 
The algorithm presented above can be easily generalized to 
answer queries of the type: Find the k Nearest Neighbors to 
a given Query Point, where k is greater than zero.  
The only differences are: 
 

Figure 7: Two MBRs and their MINMINDIST, 

MINMAXDIST and MAXMAXDIST 

Figure 8: MINDIST and 

MINMAXDIST in 2-Space 

Figure 9: MINDIST is not always the better 

ordering 
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1. A sorted buffer of at most k current nearest neighbors 
is needed.   

2. The MBRs pruning is done according to the distance 
of the furthest nearest neighbor in this buffer.  

 
Best First Search 
 

² Calculates minmax distance for all objects   
² Sort R-Tree by minmax distance   
² Removes nodes from sorted tree. If node has no 

children , then it is the nearest neighbor  
 
Algorithms for finding Closest Pairs (CPQs) 

 

In the following, a number of different algorithmic 
approaches for discovering the 1-CP and the K-CPs 
between points stored in two R-trees are presented. 
 
Naive Algorithm 
 
The simplest approach to the problem of Closest Pair 
Queries is to follow a recursive naive solution for the 1- CP 
subproblem and for two R-trees of the same height. Such 
an algorithm consists of the following steps.  
CP1 Start from the roots of the two R-trees and set the 
minimum distance found so far, T¯ .  
CP2 If you access a pair of internal nodes, propagate 
downwards recursively for every possible pair of MBRs.  
CP3 If you access two leaves, calculate the distance of each 
possible pair of points. If this distance is smaller than T, 
update T. 
 
Exhaustive Algorithm 
 
An improvement of the previous algorithm is to make use 
of the left part of Inequality 1 and prune some paths in the 
two trees that are not likely to lead to a better solution. The 
CP2 step of the previous algorithm would now be: 
 
CP2: If we access a pair of internal nodes, calculate 

MINMINDIST for each possible pair of MBRs. Propagate 

downwards recursively only for those pairs that have 

MINMINDIST ·  T. 
 
Simple Recursive Algorithm 
 
A further improvement is to try to minimize the value of T 
as soon as possible. This can be done by making use of 
Inequality 2. That is, when a pair of internal nodes is 

visited, to examine if Inequality 2 applied to every pair of 
MBRs, can give a smaller T value. Since Inequality 2 holds 
for at least one pair of points, this improvement is sound 
for the 1-CP problem. The CP2 step would now be: 
 
 
CP2: If you access a pair of internal nodes, calculate the 

minimum of MINMAXDIST for all possible pairs of 

MBRs. If this minimum is smaller than T, update T. 

Calculate MINMINDIST for each possible pair of MBRs. 

Propagate downwards recursively only for those pairs that 

have MINMINDIST ·  T. 
 
Sorted Distances Recursive Algorithm 
 
A heuristic that aims at improving our algorithms even more 
when two internal nodes are accessed, is to sort the pairs of 
MBRs ac-cording to ascending order of MINMINDIST and 
to obey this or-der in propagating downwards recursively. 
This order of processing is expected to improve pruning of 
paths. The CP2 step of the previous algorithm would be: 
 
CP2: If we access a pair of internal nodes, calculate the 
mini-mum of MINMAXDIST for all possible pairs of 
MBRs. If this minimum is smaller than T, update T. 
Calculate MINMINDIST for each possible pair of MBRs 
and sort these pairs in ascending order of MINMINDIST. 
Following this order, propagate downwards recursively 
only for those pairs that have MINMINDIST <= T. 
 
Heap Algorithm 
 
The overall algorithm is as follows. 
 

1. Start from the roots of the two R-trees, set T to 
infinity and initialize the heap.  

 
2. If we access a pair of internal nodes, calculate the 

mini-mum of MINMAXDIST for all possible 

pairs of MBRs. If this minimum is smaller than T, 

update T. Calculate MIN-MINDIST for each 

possible pair of MBRs. Insert into the heap those 

pairs that have MINMINDIST ·  T  
 

3. If we access two leaves, calculate the distance of 
each possible pair of points. If this distance is 
smaller than T, update T.  

 



IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 3, Issue 1, Feb-Mar, 2015 

ISSN: 2320 – 8791 (Impact Factor: 1.479)    

www.ijreat.org 
 

   www.ijreat.org 
                                     Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org)  129 
 

4. If the heap is empty then stop.  
 

5. Get the pair on top of the heap. If this pair has 
MINMINDIST > T, then stop. Else, repeat the 
algorithm from Step 2 for this pair.  

6.2 An index structure for efficient reverse nearest 
neighbor(RNN) queries 

.Introduction 
 
RNN query finds all the points in the given data set S, 
having a query point q as their nearest neighbor. the 
author in this paper has proposed a new structure called 
Rdnn - tree i.e. R - tree containing Distance of Nearest 
Neighbors differing from standard R tree structure in 
terms of storing extra information about nearest 
neighbor of the points in each node. 
 
Motivation 
 
R - tree faces the following limitations :- 
 

1. There is a large overlap of MBR (Minimum 
Bounding Region) of parent nodes hampering the 
RNN search performance   

2. For dynamic cases, a second tree is required for 
storing the index structure of the spherical regions 
resulting in more time to compute RNN queries 
and added maintenance cost.  

 
Thus there is a need to propose a better structure that 
can eliminate the above limitations and can provide 
better features for faster execution of both NN and 
RNN queries. 
 
Rdnn - Structure and Proposed Algorithm 
 
In a Rdnn - tree consist of leaf node and internal node. An 
internal node consist of an array of branches of the form 
(ptr; Rect; maxdnn) where ptr is the address of a child node 
in the tree and if the ptr points to a leaf node, Rect is the 
minimum bounding rectangle of all points in the leaf node 
otherwise Rect is the minimum bounding rectangle of all 
rectangles that are entries in the child node. Whereas the 
leaf node is of the form (ptid;dnn), where ptid refers to a d-
dimensional point in the data set and dnn is the distance 
from the point to its nearest neighbors in the data set. 
 

Algorithms Proposed 
 
RNN search 

 
Let say we need to do reverse nearest neighbor search on 
Rdnn tree for a query point q, then  
 

1. For a leaf node, examine each point p in the node 
such that the distance of the point p to q is less than 
or equal to the nearest neighbor distance of point p 
in the dataset, S. From this we can say p is at least 
as close to q as to its nearest neighbor, then p is one 
of the reverse nearest neighbors  

 
2. For an internal node, compare the query point q 

with each branch B=(ptr;Rect;maxdnn).By 
definition of Rdnn - tree we know that all the points 
in the subtree rooted at B are contained in Rect and 
the distance from each point to its nearest neighbor 
is not greater than maxdnn since maxdn-nis the 
largest of them. Hence if D(q;Rect)> maxdnn, then 
branch B need not to be visited otherwise call 
RNN-Search( B.ptr , q).  

 
NN Search 
The algorithm applied to find NN for R- tree can be 
applied to Rdnn - tree for the reason that Rdnn tree has 
all the properties of R-tree. Moreover in Rdnn tree , if 
the distance of the point p from the querying point q is 
less than half the distance of nearest neighbor of point p 
then we can safely say p is the nearest neighbor of q in 
data set S. This helps in pruning the extra branches 
during the branch-and-bound search making the 
algorithm more efficient and faster. 
 

Experiments and Results 
The author implemented and compared the RNN - tree 
method using R-tree and Rdnn-tree on systems with 
configurations as 2.5 GHz , Pentium II processors , 512 
RAM and running SCO UNIX as operating system. The 
results are shown in the table. 
 

1. Rdnn structure significantly outperformed the 
index structures in, and typically requires only 1-2 
leaf access to locate the RNNs. From the figure 1 
we can observe, in 2D cases the RNN tree 
approach took 20 leaf access for the data set having 
1 lakh items whereas Rdnn -tree took only 2 leaf 
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access, thereby a significant improvement of over 
90 percentage.   

2. From the data in the Table 1, it is clear that Rdnn-
tree can perform NN queries efficiently. Thus in 
dynamic cases , only one tree is required for both 
the Nearest Neighbor(NN) and RNN queries   

3. The Rdnn-tree allows to execute multiple NN and 
RNN queries in one traversal of the tree, further 
enhancing performance in the dynamic case.   

In terms of disk access, the Rdnn tree structure provided 4-
5 times better efficiency than the RNN tree in the two 
dimensional data. 
 

6.3 A density based algorithm for discovering 
clusters in spatial databases with noise  

 
The task considered in this paper is class identification 
i.e. the grouping of the objects of a database into 
meaningful subclasses  
.It requires one input parameter and supports the user in deter-
mining an appropriate value for it. It discovers clusters of 
arbitrary shape. Here DBSCAN has implemented on the basis 
of R*- tree. 

 
     Figure 10: Comparison of NN queries performance 
 
All experiments have been run on HP 735/100 workstations 
with the help of synthetic data and the database of the SEQUOIA
2000 benchmark. 
Positive aspects- 
i. Faster ii. Efficient iii. Applicable for large database  
iv. Applicable on arbitrary shape. v. Extendable for polygons 
over point objects. 
Points missed: i. High dimensional data not considered. ii.  
It is only about static rather than moving obstacles. 

6.4 Algorithm for characterization and trend 
detection in spatial databases 

 
In this algorithm it has observed that for spatial 
characterization, it is important that class membership of a 
database object is not only determined by its non-spatial 
attributes but also by the at-tributes of objects in its 

neighborhood. In this paper neighbor-hood relationship is 
considered as centered point of discussion. With the help    
Of  different databases, various local and global trends have 
detected. 
 
Spatial Trend Detection 
 
Spatial trend is defined as a regular change of one or more 
non-spatial attributes when moving away from a given start 
object o.A trend can be positive trend, negative (linear) 
trend as well as a situation where no significant (linear) 
trend is observed. Neighborhood paths starting from o are 
considered and linear regression analysis is performed on 
the respective attribute values for the objects of a 
neighborhood path to describe the regularity of change. A 
Linear regression is used, since it is efficient and often the 
influence of some phenomenon to its neighborhood is either 
linear or can be transformed into a linear model, e.g. 
exponential regression. The correlation of the observed 
attribute values with the values predicted by the regression 
function yields a measure of confidence for the discovered 
trend. 
 
Algorithm 
Let g be a neighborhood graph, o an object (node) in g, attr 
be a subset of all non-spatial attributes, t be a type of 
function, e.g. linear or exponential, used for the regression 
and let filter be one of the filters for neighborhood paths.  
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11: Performance of both trend 

algorithm 
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Figure 12: The steps of trend detection in a geographic 

information system 
 
Spatial trend detection Algo discovers the set of all 
neighborhood paths in g starting from o and having  
of type t in attributes attr with a correlation of at least min-
conf. The paths must satisfy the filter and their length must 
be between min-length and max-length. 
 

1. Global Trend Algo creates all neighborhood paths 
of the same length simultaneously - starting with 
min-length and continuing until max-length. The 
regression is performed once for each of these sets 
of all paths of the same length. If no trend of length 
l with correlation ¸ min-conf is detected then the 
path extensions of length l+1, l+2, ---, max-length 
are not created. The algorithm returns the 
significant spatial trend with the maximum length.  

2. Local Trend Algo performs a regression once for 
each of the neighborhood paths with length min-
length and a path is only extended further if it has 
a significant trend. The algorithm returns two sets 
of paths showing a significant spatial trend, a set of 
positive trends and a set of negative trends.  

6.5  Density connected sets and their application for 
trend detection in spatial databases. 
 
In this paper, the concept of density connected sets has 
been introduced to discover the trends in a spatial 
database. Also an algorithm which is generalized form of 
DBSCAN has been pro-posed having following 
properties.(1) any symmetric predicate can be used to 
define the neighborhood of an object allowing a natural 
definition in the case of spatially extended objects such as 
polygons, and (2) the cardinality function for a set of 
neighboring objects may take into account the non-spatial 
attributes of the objects as a means of assigning 
application specific weights. 

Algorithm and Trend Detection in GIS ( Geographic  
Information System) 
A geographic database having both spatial and non-
spatial data information with its administrative units such 
as communities, its natural facilities such as the 
mountains and its infrastructure such as roads has been 
considered. The database contains the ATKIS 500 data 
and the Bavarian part of the statistical data obtained by 
the German census of 1987.For trend detection , SAND 
(partial And Non-spatial Database) architecture is used to 
store spatial extension of all objects using R* tree 
structure and the non-spatial attributes of the 
communities managed by a relational database 
management system.  
The Bavaria database may be used, e.g., by economic 
geographers to discover different types of knowledge. In 
the following, we discuss the tasks of spatial 
classification and spatial trend detection.  
Spatial classification should discover rules predicting the 
class membership of some object based on the spatial and 
non-spatial attributes of the object and its neighbors. for 
example: 
if there is some agglomeration of cities, then this 

agglomeration neighbors a highway (confidence 75 %)  
A spatial trend as a pattern of systematic change of one 
or several non-spatial attributes in 2D or 3D space. To 
discover spatial trends of the economic power, following 
steps needs to be followed as follows: 
 
 

1. To discover local extrema of some non-spatial 
attributes such as the rate of unemployment. 
Initially all the areas with a locally minimal rate of 
unemployment are determined which are called 
centers, e.g. the city of Munich. The theory of 
central places claims that the attributes of such 
centers influence the attributes of their 
neighborhood to a degree which decreases with 
increasing distance. E.g., in general it is easy to 
commute from some community to a close by center 
thus implying a low rate of unemployment in this 
community.  

 
2. To determine both theoretical and observed trend 

of non-spatial attributes when moving away from 
the centers the theoretical trend of the rate of 
unemployment in the neighborhood of the centers 
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is calculated.  
 

when moving away from Munich rate of 

unemployment increases (confidence 86 %)  
 

3. To discover deviations of the observed trend from 
the theoretical trend   
If the deviations from the theoretical trends 
significantly differ in length, then the longer one 
discovered is returned, e.g. indicating the direction 
of a deviation.  

 
when moving away from Munich in south-west 

direction, then the rate of unemployment is stable 

(confidence 97 %) 
 

4. To explain the deviations by other spatial objects 
(e.g. by some infrastructure) in that area and 
direction.   
The goal of the fourth step is to explain these 
deviations. E.g. if some community is relatively far 
away from a center, but is well connected to it by 
train, the rate of unemployment in this community 
is not as high as theoretically expected.  

 
A simple method for detecting spatial trends based on 
GDBSCAN has been explained. GDBSCAN is used to 
extract density-connected sets of neighboring objects 
having a similar value of the non-spatial attribute(s). In 
order to define the similarity on an at-tribute, the domain is 
partitioned into a number of disjoint classes and only the 
values in the same class similar to each other are considered. 
The sets with the highest or lowest attribute value(s) are 
most interesting and are called influence regions, i.e. the 
maximal neighborhood of a center having a similar value in 
the non-spatial attribute(s) as the center itself. Then, the 
resulting influence region is compared to the circular region 
representing the theoretical trend to obtain a possible 
deviation. Different methods may be used to accomplish 
this comparison, e.g. difference-based or approximation-
based methods. A different-based method calculates the 
difference of both, the observed influence region and the 
theoretical circular region, thus returning some region 
indicating the location of a possible deviation. An 
approximation-based method calculates the optimal 
approximating ellipsoid of the observed influence region. If 
the two main axes of the ellipsoid significantly differ in 
length, then the longer one is returned indicating the 
direction of a deviation. 
 
Conclusion 

 
GDBSCN algorithm is proposed to find interesting regions 
for trend detection in a geographic database on Bavaria. A 
spatial trend was defined as a pattern of systematic change 
of one or several non-spatial attributes in 2D or 3D space. 
On the basis of repeated trends of the databases certain 
predictions are explained. Somewhere it has observed that 
given algorithm is not able to give clear cut relations 
between different datasets. 

6.6 Extended algorithm for spatial characterization 
and discrimination rules 

In this paper, a new spatial data mining algorithm for both 
characterization and discrimination rules have been 
proposed. A characterization rule is an assertion which 
characterizes a concept satisfied by all or a majority number 
of the examples in the class undergoing learning (called the 
target class).A discrimination rule is an assertion which 
discriminates a concept of the class being learned from 
other classes (called contrasting classes).In medical science 
for diagnosis of diseases, it is very important and usable.  
In this paper, proposed algorithm is very much suitable for 
identification of weather patterns. In this algorithm, the 
characteristics of some spatial objects can be found as well 
as what the characteristics of that spatial objects 
discriminate from other contrast spatial objects can also be 
found. 
 
Positive aspects of this algorithms are: 
 

1. It extracts not only the properties of target and 
contrast objects but also the properties of their 
neighbors as they impact on the characteristics of all 
objects.   

2. It shows successful implementation of general frame 
work for SPDM.   

3. This algorithm is more suitable for medical and 
weather applications.  

7. Spatial data analysis using map   
Reduce (MR) and parallel DBMS 

Two paradigms exist to query over large scale spatial data 
- Map Reduce and parallel database. In our paper, we have 
described and compared both the paradigms in terms of 
performance and complexity. Map Reduce is one of the 
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simplest and best known tool available through which one 
can easily write distributed programs. But at the same time 
, there are dozens of parallel database systems like 
Teredata , AsterData , Netezza , Dataupio , Oracle(via 
Exadata) are available in the market over last two decades 
and provide high level programming environment. Also it 
is possible to rewrite any parallel processing task as either 
a set of database queries or a set of Map reduce jobs. So 
the question arises what are the key difference between 
these two approaches - MapRe-duce and parallel database 
systems. 
 
7.1 Analysis   
7.1.1 Schema Support   

Parallel DBMSs require data to fit into the relational 
paradigm of rows and columns. In contrast, the MR model 
does not require that data files adhere to a schema defined 
using the relational data model. That is, the MR 
programmer is free to structure their data in any manner or 
even to have no structure at all.  
One might think that the absence of a rigid schema 
automatically makes MR the preferable option. For 
example, SQL is often criticized for its requirement that 
the programmer must specify the "shape" of the data in a 
data definition facility. On the other hand, the MR 
programmer must often write a custom parser in order to 
derive the appropriate semantics for their input records, 
which is at least an equivalent amount of work. But there 
are also other potential problems with not using a schema 
for large data sets. 
 
Whatever structure exists in MR input files must be built 
into the Map and Reduce programs. Existing MR 
implementations pro-vide built-in functionality to handle 
simple key/value pair for-mats, but the programmer must 
explicitly write support for more complex data structures, 
such as compound keys. This is possibly an acceptable 
approach if a MR data set is not accessed by multiple 
applications. If such data sharing exists, however, a second 
programmer must decipher the code written by the first 
programmer to decide how to process the input file. A 
better approach, followed by all SQL DBMSs, is to 
separate the schema from the application and store it in a 
set of system catalogs that can be queried. 
 
But even if the schema is separated from the application and 
made available to multiple MR programs through a 

description facility, the developers must also agree on a 
single schema. This obviously requires some commitment 
to a data model or models, and the input files must obey this 
commitment as it is cumbersome to modify data attributes 
once the files are created  
Once the programmers agree on the structure of data, 
something or someone must ensure that any data added or 
modified does not violate integrity or other high-level 
constraints (e.g., employee salaries must be non-negative). 
Such conditions must be known and explicitly adhered to 
by all programmers modifying a particular data set; a MR 
framework and its underlying distributed storage system 
has no knowledge of these rules, and thus allows input data 
to be easily corrupted with bad data. By again separating 
such constraints from the application and enforcing them 
automatically by the run time system, as is done by all SQL 
DBMSs, the integrity of the data is enforced without 
additional work on the programmer’s behalf  
In summary, when no sharing is anticipated, the MR 
paradigm is quite inaccessible´. If sharing is needed, 
however, then we argue that it is advantageous for the 
programmer to use a data description language and factor 
schema definitions and integrity constraints out of 
application programs. This information should be installed 
in common system catalogs accessible to the appropriate 
users and applications. 
 
7.1.2 Data Distribution   

Parallel DBMSs use knowledge of data distribution and 
location to their advantage: a parallel query optimizer 
strives to balance computational workloads while 
minimizing the amount data trans-mitted over the network 
connecting the nodes of the cluster  
Aside from the initial decision on where to schedule Map 
instances, a MR programmer must perform these tasks 
manually. For ex-ample, suppose a user writes a MR 
program to process a collection of documents in two parts. 
First, the Map function scans the documents and creates a 
histogram of frequently occurring words. The documents 
are then passed to a Reduce function that groups files by 
their site of origin. Using this data, the user, or another user 
building on the first user’s work, now wants to find sites 
with a document that contains more than five occurrences 
of the word ’Google’ or the word ’IBM’. In the naive 
implementation of this query, where the Map is executed 
over the accumulated statistics, the filtration is done after 
the statistics for all documents are computed and shipped to 
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reduce workers, even though only a small subset of 
documents satisfy the keyword filter 
SQL view and select queries perform a similar computation: 
 
CREATE VIEW Keywords AS  
SELECT siteid, docid, word, COUNT(*) AS 
wordcount FROM Documents GROUP BY 
siteid, docid, word; SELECT DISTINCT siteid  
FROM Keywords  
WHERE (word = ’IBM’ OR word = ’Google’) AND 
wordcount > 5; 
 
A modern DBMS would rewrite the second query such that 
the view definition is substituted for the Keywords table in 
the FROM clause. Then, the optimizer can push the 
WHERE clause in the query down so that it is applied to the 
Documents table before the COUNT is computed, 
substantially reducing computation. If the documents are 
spread across multiple nodes, then this filter can be applied 
on each node before documents belonging to the same site 
are grouped together, generating much less network I/O. 
 

7.1.3 Indexes   
All modern DBMSs use hash or B-tree indexes to 
accelerate access to data. If one is looking for a subset of 
records (e.g., employees with a salary greater than Rs 
100,000), then using a proper index reduces the scope of 
the search dramatically. Most database systems also 
support multiple indexes per table. Thus, the query 
optimizer can decide which index to use for each query or 
whether to simply perform a brute-force sequential search.  
Because the MR model is so simple, MR frameworks do 
not pro-vide built-in indexes. The programmer must 
implement any indexes that they may desire to speed up 
access to the data inside of their application. This is not 
easily accomplished, as the frame-work’s data fetching 
mechanisms must also be instrumented to use these 
indexes when pushing data to running Map instances. 
Once more, this is an acceptable strategy if the indexes do 
not need to be shared between multiple programmers, 
despite requiring every MR programmer re-implement the 
same basic functionality 
 
If sharing is needed, however, then the specifications of 
what indexes are present and how to use them must be 
transferred between programmers. It is again preferable to 
store this index information in a standard format in the 
system catalogs, so that programmers can query this 
structure to discover such knowledge. 

 
7.1.4 Performance  

There is a potentially serious performance problem related 
to MR’s handling of data transfer between Map and Reduce 
jobs. Recall that each of the N Map instances produces M 
output files, each destined for a different Reduce instance. 
These files are written to the local disk on the node 
executing each particular Map instance. If N is 1000 and M 
is 500, the Map phase of the program produces 500,000 
local files. When the Reduce phase starts, each of the 500 
Reduce instances needs to read its 1000 in-put files and 
must use a file-transfer protocol to transfer each of its input 
files from the nodes on which the Map instances were run. 
With 100s of Reduce instances running simultaneously, it 
is inevitable that two or more Reduce instances will attempt 
to read their input files from the same map node 
simultaneously, inducing large numbers of disk seeks and 
slowing the effective disk transfer rate. This is why parallel 
database systems do not materialize their split files and 
instead use a push approach to transfer data instead of a 
pull. 
 
7.1.5 Flexibility  

Despite its widespread adoption, SQL is routinely criticized 
for its insufficient expressive prowess. Some believe that it 
was a mistake for the database research community in the 
1970s to focus on data sub-languages that could be 
embedded in any programming language, rather than 
adding high-level data access to all programming 
languages. Fortunately, new application frame-works, such 
as Ruby on Rails and LINQ have started to reverse this 
situation by leveraging new programming language 
functionality to implement an object-relational mapping 
pattern. These programming environments allow 
developers to benefit from the robustness of DBMS 
technologies without the burden of writing complex SQL. 
Proponents of the MR model argue that SQL does not 
facilitate the desired generality that MR provides. But 
almost all of the major DBMS products (commercial and 
open-source) now provide support for user-defined 
functions, stored procedures, and user-defined aggregates in 
SQL. Although this does not have the full generality of MR, 
it does improve the flexibility of database systems. 
 
7.1.6 Fault Tolerance  

The MR frameworks provide a more sophisticated failure 
model than parallel DBMSs. While both classes of systems 
use some form of replication to deal with disk failures, MR 
is far more adept at handling node failures during the 
execution of a MR computation. In a MR system, if a unit 
of work (i.e., processing a block of data) fails, then the MR 
scheduler can automatically restart the task on an alternate 
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node. Part of the inaccessibility´ is the result of the fact that 
the output files of the Map phase are materialized locally 
instead of being streamed to the nodes running the Re-duce 
tasks. Similarly, pipelines of MR jobs, materialize 
intermediate results to files each step of the way. This 
differs from parallel DBMSs, which have larger granules of 
work (i.e., transactions) that are restarted in the event of a 
failure. Part of the reason for this approach is that DBMSs 
avoid saving intermediate results to disk whenever possible. 
Thus, if a single node fails during a long running query in a 
DBMS, the entire query must be completely restarted. 
8. Performance analysis 

 
 
 
 
 
 
 
 
 
 
 
                        Figure 13: Data Loading 
The three major systems Hadoop for Map Reduce(MR), 
DBMS-X for parallel DBMS and Vertica were deployed on 
a 100-node cluster such that each node has a single 2.40 
GHz Intel Core 2 Duo processor running 64-bit Red Hat 
Enterprise Linux 5 with 4GB RAM. 
8.1 Benchmark Test   

Data Loading  
 

The results for loading 1TB/cluster data sets is shown 
in the figure 13.  

 
The most striking feature that can be observed from 
the figure is the difference in performance of DBMS-
X compared to Hadoop and Vertica. Despite issuing 
the LOAD command on each node in parallel, the data 
is actually loaded on each node sequentially resulting 
in increased load time with increasing amount of data.  

 
 
 
 
 
 

 

 

 

Task Execution   
The performance results for the three systems for this task 
is shown as below:   
 

It can be clearly observed that DBMS-X and Hadoop per- 
formed slower than Vertica by a factor of more than two. 
However, Hadoop and DBMS-X performs approximately 
the same, since Hadoop’s startup cost is amortized across 
the increased amount of data processing for this experiment. 
 
Selection Task 
The Selection task is a lightweight filter to find the 
pageURLs in the Rankings table (1GB/node) with a 
pageRank above threshold, 10. 
The DBMSs execute the selection task using the following 
simple SQL statement: 
SELECT pageURL, pageRank  

FROM Rankings WHERE pageRank > X; 
 
 

 
 
 
 
 
 
 

 
 

 

 

 

 
 
Figure 15: Selection Task Results 

 

Figure demonstrate that the parallel DBMSs 
outperform Hadoop by a rather significant factor across 
all cluster scaling levels. Although the relative 
performance of all systems degrade as both the number 
of nodes and the total amount of data increase, Hadoop 
is most affected.  
This is due to Hadoop’s increased start-up costs as more 
nodes are added to the cluster, which takes up a 
proportionately larger fraction of total query time for 
short-running queries. Another reason can be is that both 
Vertica and DBMS-X use an index on the pageRank 
column and store the Rankings table sorted by pageRank 
4. Aggregation Task   

This task requires each system to calculate the total 
adRevenue generated for each sourceIP in the 
UserVisits table (20GB/node), grouped by the 
sourceIP column.   
The SQL commands to calculate the total adRevenue is 
straight-forward:  

 
SELECT sourceIP, SUM (adRevenue) FROM UserVisits 
GROUP BY sourceIP;  
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 Figure 16: Aggregation Task Results 

Clearly both DBMSs i.e. DBMS-X and Vertica 
outperformed Hadoop. The DBMSs execute these queries 
by having each node scan its local table, extract the 
sourceIP and adRevenue fields, and perform a local group 
by. These local groups are then merged at the query 
coordinator, which outputs results to the user. Thus, unlike 
Hadoop, their runtime is dominated by the cost to transmit 
the large number of local groups and merge them at the 
coordinator. 

9. Discussions  
In this report we have presented the various data 
structures for indexing with their usability for querying in 
spatial data. Various algorithms and methods developed 
have been discussed in brief and for detail explanation 
bibliography may be referred. Finally we dived into 
parallel data mining and performed benchmark 
performance test of three techniques i.e. Map Reduce, 
Vertica and DBMS-X. 
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